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Abstract

We describe a platform, IOP, for the interoperation of formal reasoning tools, and an adap-
tation of Maude, IMaude, that utilizes this platform. Threeapplications of IMaude and IOP
to real world problem domains are described.
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1 The Aims

In order for formal tools to be more generally useful it is important that the tools
can interact with one another via simple, well defined, semantically meaningful
communication interfaces. In addition it is important for aformal tool to provide
natural user friendly means of interaction.

The Maude system [1,2] is a high performance system based on rewriting logic
with many advanced features. Currently the means of interacting with Maude is
via a command line interpreter. Typically, users that want to connect Maude to
other tools or provide alternative display mechanisms, must do something ad hoc,
for example with Perl scripts, Tcl/Tk, etc.

The IOP project is aimed at developing an infrastructure forallowing tools to
interoperate. It was motivated by the specific aim of making it possible for Maude
to communicate with other tools, including other instancesof itself, web resources,
visualization tools, theorem provers such as PVS, as well asto read and write files,
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and execute shell commands. The IOP interaction model is that of actors [3,4]
communicating via message passing, with the IOP registry serving as local post
office. IOP comes with a basic set of actors including a Maude actor, a PVS actor, a
Graphics actor, and communications actors that support sockets, file system access,
and program execution. Additional actors can be added quiteeasily. The Maude
actor is aninteractiveextension of Maude that we call IMaude. It is interactive in
the sense that rewrite computations are interleaved with communications with the
environment, and the IMaude’s state persists across communications. IOP provides
the Maude programmer with a much richer modeling environment with support
for developing visualization and animation of Maude specifications in interesting
ways, for exporting Maude modules to other tools (based on other formalisms) for
alternative analyses and visualizations, and for developing notions of session state
that can be saved and resumed. The reflective capability of Maude makes Maude
well suited to programming such interactions and has been crucial in our studies
to date. Using the communication actors as a go-between, theMaude actor can
talk to any tool that is capable of interacting via an internet socket connection.
Although the main actor in the current IOP is the Maude actor,IOP also currently
incorporates a PVS actor, and the basic IOP infrastructure is independent of Maude
and could be used to endow other tools with communication capability. The IOP
manual, binaries for Linux and Mac OS X, and setup instructions are available
at http://mcs.une.edu.au/˜iam/IOP/ . The IMaude code is available at
http://www.csl.sri.com/˜clt/IMaudeWeb/

The development of IOP has been largely driven by the particular needs of
several substantial applications. In§ 2 we briefly sketch three of these applications:
the Pathway Logic Workbench, Mobile Maude, and the SCRover.We will then use
these examples to motivate the subsequent description of IOP. In§ 3 we describe the
IOP architecture. In§ 4 we describe the basic actors and rules for communication.
In § 5 we describe the core set of Maude modules that we use for programming
IMaude applications. We conclude with a discussion of future directions.

2 The Applications

The Pathway Logic workbench is the first and most substantialapplication using
IOP, serving as motivation and a testbed for the design and development of the IOP
interface and actors. We discuss this application is some detail, and briefly discuss
additional features used by two other applications.

2.1 The Pathway Logic Workbench

Pathway logic [5,6,7] is an application of Maude to modeling cellular networks—
collections of rules describing processes that transmit information (signal transduc-
tion) or transform chemicals (metabolism). Maude rules fornetwork elements have
a form equivalent to

rl[id]: p1 : l1 ... pk : lk => p1’ : l1’ ... pm’ : lm’
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wherepi : li is anoccurrence, a protein or biochemicalpi positioned within
a cell at the locationli (membrane, nucleus, endosome ...). Once a set of rules is
represented in Maude, the biologist can use the Pathway Logic Assistant to explore
the model structure and to ask questions, such as: starting with a cell containing
particular proteins and chemicals (in particular locations) can a state be reached
matching a particular pattern. These can be answered using execution, search, and
model-checking in Maude, or by converting the model to a Petri net and using Petri
net analysis tools. The network, subnets, and generated pathways can be visualized
using network graphs—graphs with a rule node for each rule, an occurrence node
for each occurrence, and edges from left-hand-side occurrences to the rule node and
from the rule node to right-hand-side occurrences. An interactive network graph
has actions associated either with the graph as a whole or with particular nodes.
For example, a rule node has an action that will display the Maude code for the
rule. An occurrence node in a subgraph can has an action that extends the subgraph
by adding any missing nodes and links associated the occurrence. An extendible
graph has action to undo the last extension. These actions allow a biologist to
incrementally explore a complex graph.
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Fig. 1. The Pathway Logic Workbench

A Pathway Logic workbench (figure1) is being developed to integrate the
Maude network models, the Pathway Logic Assistant, and the various auxiliary
tools, such as the BioNet Petri net tool, the Dot graph drawing tool, the IOP Graph-
ics actor, and (in the future) Biological databases and web resources, and a GUI
for model development. IOP is the underlying infrastructure for the Pathway Logic
workbench. We expect that this workbench architecture willbe useful for many
Maude based applications, adding functionality and enriching the ability to visual-
ize and interact with Maude specifications.
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The Pathway Logic Assistant is an IMaude program that servesas command
interpreter and coordinator of interactions of Maude and other tools. The IOP com-
munications center (registry) routes requests to appropriate tools, either sending
messages directly to IOP actors or using the executor actor to send requests via the
underlying operating system and the Filemanager actor to store data to be passed
in a file. The Graphics actor is used to display interactive graphs and other visual-
izations.

2.2 Mobile Maude

To experiment with the use of Sockets and Listeners we built aprototypical mo-
bile object example, using ideas from the Mobile Maude design [8]. Here loca-
tions are different Maude actors each with a listener listening on some port for
messages. The Maude actor is an IMaude program that can be thought of as an
interactive metaobject containing a configuration of possibly mobile objects as part
of its state [9]. Each configuration contains a special actor for handling requests
to install an object arriving from elsewhere. When there is amessage to a remote
actor in the base configuration, the metaobject extracts it,opens a connection to the
remote listener, and transmits the message. Correspondingly, the receiving metaob-
ject reads the message from its connection, and delivers it to the base configuration.
The metaobject only deals with sending and receiving messages, not caring if the
message is a normal base-level message or if it transports a mobile object.

2.3 Animating Maude specifications: The SCRover

Providing a visual representation of Maude specifications of distributed systems
(system state and evolution) is important to make the specifications meaningful to
non-experts, and also to help debug complex specifications.

As a first example, IOP is being used to develop visual, interactive representa-
tions our model of the SCRover being developed as part of our NSF-NASA project
Formal Checklists for Autonomous Remote Agents[10,11]. The objective of the
project is to provide higher assurance for software for deepspace missions by
developing a formal framework for specifying mission goalsand the elaboration
of goals to goal nets consisting of primitive constraints that correspond to device
driver commands to be achieved at specified time intervals.

Rover is visualized using a graphical object that knows its location and ori-
entation. In addition to responding to messages generated by mouse or keyboard
input, the rover object can receive messages from other IOP actors. Thus, like the
IMaude actor for mobility, the graphics actor must provide for messages to and
from its contained graphical objects. For the initial case study we defined an ad hoc
syntax for messages to the rover graphical object and the reactions are hardwired
in Java code for the behavior of the rover graphical object (represented as a Java
object). Future work is to define a more general syntax for describing active graph-
ical objects. Another task is to define module transformations that automatically
add instrumentation for animating object system behavior.
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3 The Architecture

IOP’s design is based on the actor model of distributed computation [4]. IOP con-
sists of a pool of actors that interact with one another via asynchronous message
passing. The pool of actors is dynamic, it may grow or shrink as time goes by. Ac-
tors can be initial actors, created at startup, or be createdby another actor already
in the system in response to some event, such as an actor receiving a message, or
reacting to some external action, such as a connection beingmade to a socket. The
collection of actors created at startup is easily configurable and new actors can be
designed and added to the system.

An actor in IOP usually is simply a UNIX style process that hasbeen registered
with the system according to a simple procedure. Part of thisregistration process
involves allocating three FIFOs,or UNIX style named pipes,and redirecting the
actor’sstdin , stdout andstderr file descriptors to these special files [12].

However, not all actors are single processes, some consist of two processes. For
example, the actors that correspond to formal reasoning tools such as Maude and
PVS, usually consist of two processes: the process running the tool, and a wrapper
actor acting as a go-between for the tool and the underlying message system.

There is no restriction on the language used to write an actor’s script or exe-
cutable. Some are written in C, some are written in Java, someare written in Perl.
One simply chooses the appropriate language for the desiredtask or function that
the actor is supposed to perform. Actors can be single threaded or multi-threaded,
each according to its needs. They can even consist of severalprocesses written in
different languages. For example, the Graphics actor that provides Maude, and any
other actor that wishes it, with a graphical toolkit, is written in Java, and requires a
thin C process wrapper to interface with the FIFOs.

Apart from the autonomous actors in the system, IOP consistsof three indepen-
dent processes that interact. Themain that creates and configures the system, the
registry, and a GUI front end.

An Actor

An Actor

An Actor

The Registry
An Actor

A Two Process Actor

After startup themain acts mainly as a signal handler, ensuring clean and
graceful shutdown. The registry keeps track of the current actors, and maintains
the lines of communication between these actors. The GUI front end provides the
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user with an easy means of sending messages to any of the actors in the system.
The upper part can used to compose messages to be sent to any ofthe IOP actors. It
can be loaded from a file and edits saved. The lower part displays any output from
the actors that isn’t inter-actor communication (errors ormessages to the user). The
main and registry are written in ANSI C using pthreads and the UNIXSpecifica-
tion Version 3 [12], while the GUI front end is written using Java’s Swing platform.
Neither themain , nor the registry, nor the GUI are considered as actors in thesys-
tem, rather they are part of the communication infrastructure. IOP currently runs
on Linux, and Mac OS X. Once Maude itself has been ported to theplethora of
Windows platforms, a port to these will be constructed, using [13]. The system
is designed to be self contained, robust, and extensible. Several different IOP’s
can run on the same machine without interfering with one another, they can even
communicate with one another if the need arises, as it does inthe mobile Maude
example.

The registry maintains a list of all the actors that are registered with it. It per-
forms several functions, and maintains three lines or formsof communication. The
three forms of communication areinter-actorcommunication, messages sent from
one actor to another.Meta-actorcommunication, actors notifying the registry of
the birth or death of actors.Interfacecommunication, communication between the
registry and actors with the GUI front end. Each type of communication has a
dedicated infra-structure that supports it. In the case ofinter-actorcommunication,
each registered actor in the system has three FIFOs, in/tmp/ , associated with it,
For each actor in the system there are three dedicated registry threads one to mon-
itor each FIFO that is associated with the actor’sstdin , stdout andstderr
file descriptors. The registry also has two FIFOs (again in/tmp/ ) that are used
in various meta-communications, such as the registering ofa newly created actor,
or from an actor politely informing the system of its imminent demise. All files
in /tmp/ incorporate into their name the unique process identifier ofthe main
process associated with them, hence multiple IOP’s on the same machine do not
interfere with one another. Finally the registry communicates with the GUI front
end by using two socket connections established at startup.

Inter-actor communication is purely ASCII text, and is implemented in two
layers, the user layer, and the transport layer. In the transport layer a message
consists simply of a line of text representing a number (i.e an integer in base ten),
followed by that specified number of bytes. The user layer, implemented on top
of the transport layer, consists of the address of the targetactor, the address of the
sending actor, followed the body of the message, each on a newline:

maude
graphics
show mauderule 23

This same message can be sent from the GUI by selectingMaude as the destina-
tion, and sending the text(graphics show mauderule 23) . Either way
the message is transmitted in the transport layer as the sequence of bytes:
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33\nmaude\ngraphics\nshow mauderule 23\n

Simple libraries implement the user layer on top of the transport layer, and allow
for reliable cross platform and architecture independent communication.

4 The Actors

As we have mentioned IOP is configurable, and the wealth of actors in the sys-
tem depends on the desired application. In the examples discussed in§ 2, the
important actors are the Maude actor, the Filemanager actor, the Executor actor,
the Socketfactory, Listener, and Socket actors, and the Graphics actor. For a de-
tailed description of each actor and the syntax of the message requests they support
see [14].

The Maude Actor.
The Maude actor consists of two processes, one running the Maude executable,

while the other, called thewrapper, acts as an intermediary between Maude and the
registry. Any error messages Maude emits are, like all otheractor’s error messages,
redirected to the error and output text area of the GUI front end. Maude’s output
is interpreted by the wrapper, and then translated to a format acceptable to the un-
derlying inter-actorcommunication system. The process of interpretation consists
of replacing symbolic control characters such as\n , \r , \t , \" , and\\ by the
appropriate control sequences themselves. So for example the quoted identifier

"graphics\nmaude\n(string \"This is a string.\")"

would be interpreted by the wrapper as three lines of text, and translated into a form
acceptable to the registry, which in turn would interpret itas a message destined to
the graphics actor. The graphics actor in turn would interpret it as a request to
display the string"This is a string." in a window:

The Filemanager Actor.
The Filemanager actor provides any other actor in the systemwith a uniform

way to interact with the underlying file system. It accepts the requests from any
actor to read, write, or append to files, and responds with a reply to the requesting
actor with a message containing the appropriate information, such as the result of
the read, or the success or failure of the write or append.

The Executor Actor.
The Executor actor provides the other actors in the system with the ability to ex-

ecute any program they care to specify. The Executor actor forks off a child process
to execute the requested command, and once the program has finished executing,
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the child process of the Executor actor replies with the exitcode of the requested
execution. For example, the message(user gv foo.ps) sent from the GUI
to the executor actor would result in ghostview window displaying the specified
postscript file. The executor is used by the Pathway Logic Assistant to display
graphs using the GraphViz toolkit [15].

The Socketfactory, Listener, and Socket Actors.
This trio of actors, or more accurately classes of actors, allows any actor in the

IOP system simple structured access to the Internet. It is also our first example of
actors creating other actors in response to requests.

Initially, at startup, IOP contains a single Socketfactoryactor. A Socketfactory
actor responds to two type of requests. It can create a clientSocket actor connected
to a specified port on a possibly remote host, and if successful replies with the name
of the newly created socket actor. Or it can create a Listening socket actor, listening
for connections on a particular port, and if successful it replies with the name of
newly created listening actor. In both cases, if unsuccessful, the Socketfactory
replies with an appropriate failure notification.

A Listener actor is created by a request from aclient actor to the Socketfac-
tory. The created Listener actor’s main task is to listen on the appropriate port, if a
connection occurs it creates a new Socket actor for this connection, and notifies it’s
client actor of the name of this newly created actor. Other than this, the only other
thing a Listener can do is close itself in response to a closing request. In response to
a closing request the Listener actor closes the underlying operating system listening
socket, notifies the registry of its imminent demise, then exits.

A Socket actor is a simple interface to the underlying operating system’s socket.
An actor can ask a socket actor to write some number of bytes, read some number
of bytes, or close itself. In the case of a read request, the number of bytes is taken
to be an upper limit. The Socket actor blocks until some bytesare available, it then
replies with the number of bytes actually read, and the bytesthemselves. If the read
fails, the requesting actor is notified. In the case of a writerequest, the Socket actor
attempts to write that number of bytes to the underlying operating system socket.

The Graphics Actor.
The Graphics actor creates graphical objects that the user and other actors in the

system can manipulate. Like the Maude actor the Graphics actor is a two process
system consisting of a POSIX C wrapper process and a subservient Java process.
The Java process is written using Joel Bartlett’s Ezd package [16], updated by the
first author to Java 2 and Swing,javax.swing . Joel’s system uses the deprecated
Java 1.0 event system, as well as the antiquatedawt package.

The Graphics actor is a first step towards realizing a graphics algebra with map-
pings between algebraic data types (as specified in Maude) and graphical objects
that have a related structure. Graphical objects are interactive and can be used to
interact with related Maude data structures. So far we have defined the following
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graphical objects: Graphs, Menus, Text, Grids, Containers, and Sprites. These ob-
jects are specified using a Lisp style syntax, and messages sent to active graphical
objects also have a Lisp style syntax.

As a sample we show a message to the graphics actor requestingcreation of a
graph as part of a session with the Pathway Logic Assistant.

graphics
maude
(graph

(label qt)
(nodes

(node 0 ((label Glucose-out)(shape ellipse)(color lightC yan)))
(node 1 ((label Glut1-CMin)(shape ellipse)(color lightCy an)))
(node 2 ((label Glucose-CMin)(shape ellipse)(color light Cyan)))
(node 3 ((label Glut1-act-CM)(shape ellipse)(color light Cyan)))
(node 4 ((label 25)(shape box)(color white)

(onclick "maude\ngraphics\nshow mauderule 25"))))
(edges

(edge 0 4 ((color magenta)(label i)))
(edge 1 4 ((color magenta)(label i)))
(edge 4 2 ((color green)(label o)))
(edge 4 3 ((color green)(label o)))))

The resulting display is shown in figure2. Theonclick node annotations are

Fig. 2. A pathway graph

actions to execute when the user (shift-)clicks on the node.They specify a message
to be sent by the Graphics actor. Thus (shift-)clicking on the node labeled 23 causes
a message to be sent to the Maude actor from the Graphics actor, with request to
show the Maude rule 23. Maude replies with a text string whichis to be displayed
as shown in figure3.
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Fig. 3. The result of invoking the show rule action

5 IMaude

IMaude extends Maude to allow interactions with the environment is to be inter-
leaved with steps of rewriting. IMaude can send messages to and receive messages
from other IOP actors (including the user) or communicate with other systems via
files or sockets.

IMaude begins with theLOOP-MODEmodule of core Maude.

mod LOOP-MODE is
protecting QID-LIST .
sorts State System .
op [_,_,_] : QidList State QidList -> System [ctor special (. ..)] .
endm

This module is the mechanism used to support building user interfaces by providing
a basic read-eval-print loop. ALOOP-MODEsystem has the form[inQ,S,outQ]

whereinQ andoutQ are lists of quoted identifiers (qids) andS is the system state
that is rewritten using application specific rules providedin a module that includes
LOOP-MODE. The state persists between input/ouput actions until the loop is exited.
inQ is a stream that receives input directed to the loop from standard input and
outQ corresponds to a stream connected to standard output. The Maude tokenizer
converts the input byte stream into a qid list (each qid represents a token) and
conversely the output qid list is converted to a byte stream by Maude.

To develop a user interface usingLOOP-MODEone needs to define theState

data type and define rules for processing input from the inputstream (see [2]
Chapter 11). In the case of core IMaude this is taken care of bythe module
INTERACTIVE and its imported modules, which is the starting point for ourIMaude
applications.

5.1 IMaude State

In IMaude aLOOP-MODEstate is a pair consisting of a control component of sort
Control and a set of entries of sortESet .

mod INTERACTIVE is
inc ENTRY .
inc CONTROL .
inc LOOP-MODE .
op st : Control ESet -> State .

... <application independent rules> ...
endm

The application independent rules are discussed below. Entries are used to record
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results of reductions and rewriting requests for later use.An entry associates an
entry value, of sortEVal , with a pair consisting of a qid and a qid list. The qid is
the entry type, typically theLOOP-MODEcommand that generated the value and the
qid list is used to identify the entry amongst those of the same type, often simply
the command arguments. Entries (sortEntry ), with constructore and entry sets
(sortESet ) are declared (in the moduleENTRY) as follows.

sorts Entry ESet EVal .
subsort Entry < ESet .
op none : -> ESet .
op _;_ : ESet ESet -> ESet [ctor assoc comm id: none] .
op e : Qid QidList EVal -> Entry [ctor].

The sortEVal serves as the union sort for the different values to be recorded. To
avoid sort confusion we use conversion functions to map eachsort of interest to
EVal s. The moduleENTRYdefines a number of useful functions for manipulating
entries and entry sets, including functions to retrieve an entry from, add an entry
to, and remove an entry from an entry set. These functions ensure that an entry set
has at most one entry for a given entry type and argument list.In theLOOP-MODE

setting, printing means producing a qid list to put in the output queue. The function
showESet(es:ESet) prints the entries of thees:ESet , separated by newlines,
using the functionshowEntry(ee:Entry) . The IMaude programmer is obligated
to provide equations defining

showEntry(e(etype:Qid,qs:QidList,ev:EVal))

for each entry type used. These are typically defined along with the command (or
commands) that create a given entry type as shown below for the setq entry type.

The moduleENTRYprovides two subsorts ofEVal : TermEVal and QEVal .
Elements of sortTermEVal are pairs consisting of a qid naming the module, and a
Term metarepresenting a term of that module.

sort TermEVal .
subsort TermEVal < EVal .
op tm : Qid Term -> TermEVal .

Elements of sortQEVal are coercedQidLists .

sort QEVal .
subsort QEVal < EVal .
op ql : QidList -> QEVal .

The control component of an IMaude system state is used to determine when to
respond to particular inputs. Inputs can generally be partitioned into requests and
replies. Typically a reply is expected in response to a request sent by IMaude. The
control component indicates when IMaude is waiting for a reply. Some incoming
requests can be handled at any time, others should not be accepted if IMaude is
waiting for a reply. At the moment, these requests are lost (the environment should
not have sent them). A more robust version might queue them for later consider-
ation. The moduleCONTROLdeclares the sortControl , two constructors, and a
functionshowControl that converts a control element into a qid list for output.
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sort Control .
op ready : -> Control [ctor] .
op wait4 : Qid QidList -> Control [ctor] .

op showControl : Control -> QidList .
eq showControl(ready) = ’ready .
eq showControl(wait4(mtype:Qid, args:QidList)) =

( ’wait4 mtype:Qid args:QidList ) .

The ready control indicates that IMaude is not waiting for anything. It is
the initial value of the control component. Thewait4(id:Qid,why:QidList)

control, as currently used, indicates that IMaude is waiting for a reply from an actor
identified byid:Qid , wherewhy:QidList contains information about the request
needing a reply and/or information about what to do when a reply is received. Use
of thewait4 control will be illustrated below.

The moduleINTERACTIVE provides a number of rules for processing applica-
tion independent commands. The following are some examples.

• (show control) prints the system control component, and sends the printed
representation to the user.

• (reset control) resets the control component to its initial state.
• (show entry <etype> <args>) prints the entry matching the type and ar-

gument qids.
• (remove entry <etype> <args>) removes the entry completely matching

the type and argument qids.
• (setq <vname> <vids>) adds an entrye(’setq,<vname>,ql(<vids>)) .
• (let <vname> <modname> <sortname> <term> ) adds an entry

e(’let,<vname>,tm(<modname>,resT)) ,whereresT is the result of meta-
parsing and meta-reducing the<term> list of qids in the module named by
<modname>.

As an example we give the rule for processing asetq request. We require that a
setq request only be accepted in aready state, to prevent external modification
of the entry set while processing another request.

rl[setq]:
[’setq vname:Qid InQ, st(ready, es:ESet), OutQ]

=>
[nil,

st(ready, addEntry(es:ESet, ’setq,vname:Qid, ql(InQ))) ,
’user ’\n ’maude ’\n ’setq vname:Qid InQ ] .

Here we use Maude’s inline variable declarations. For example vname:Qid de-
clares a variable with namevname and sortQid . Inline declarations are completely
local, and two inline variables are considered the same (within an equation or rule)
only if they have the same name and sort. The input component of the system is set
to nil to indicate that this input has been processed and removed from the input
buffer. The contents of the output component will be removedand written to the
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output stream by Maude as part of theLOOP-MODEsemantics.
The equation for printing an entry of typesetq is

eq showEntry(e(’setq, vname:QidList, ql(qs:QidList))) =
’setq vname:QidList qid(" = ") qs:QidList .

The operationqid converts a string to a quoted identifier. Note that we have reused
the variable namevname to declare a variable of sortQidList . This was done to
remind us that although the argument list part of an entry canbe any qid list, we
expect that it will be a single qid, the variable name, for an entry of typesetq .

5.2 IMaude applications

To give a flavor of IMaude programming, we give sample rules from the Mobile
Maude application and the Pathway Logic application.

Mobile Maude extends the basic IMaude actor behavior with the ability to sup-
port communication between its contained object and objects residing in another
Mobile Maude actor (or any other actor that understands the message syntax). In
particular Mobile Maude listens (using a listener socket) for connections from other
actors, reads a message from each new connection, and makes connections to other
Mobile Maude actors to send messages. There is a special entry of typeconf in the
Mobile Maude state, initialized at start up, whose value is the metarepresentation
of the object configuration it manages. Messages to externalobjects are extracted
from an object configuration using a functiongetXmit and messages from exter-
nal objects are delivered using a functiondeliver . Both of these functions must
be provided as part of the specification of object configurations. In addition the
base- and meta-levels must agree on the format of object addresses. For this initial
case study addresses are triples of the form(host,port,local-id) .

As an example, we show the Mobile Maude rules used to read a message from
an external object. We assume that a Listener actor has been created and stored as
an entrye(’setq,’listener,ql(lname:Qid)) When the remote actor opens
a connection, the receiver is informed of a new connection with a message con-
taining the name of the Listener actor, the message typenewConnection , and the
name of the Socket actor created for the connection. In response, a read message
is sent to the new Socket actor from the Mobile Maude actor. The Mobile Maude
actor now waits for the Socket actor to reply, with argumentsspecifying that the
wait is for a read from a listener connection.

rl[listener.newCnx]:
[lid:Qid ’newConnection socketName:Qid InQ,

st(ready, (es:ESet ; e(’setq, ’listener, ql(lid:Qid)))),
OutQ ]
=>

[nil,
st(wait4(socketName:Qid, (’listenercnx ’read)),

(es:ESet ; e(’setq, ’listener, ql(lid:Qid)))),
OutQ socketName:Qid ’\n ’maude ’\n ’read ’10000 ] .

A read reply consists of the Socket actor’s name, a read status, and the result of
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the readinQ . A close message is sent to the Socket actor and the Mobile Maude
actor waits for a reply, remembering that it is waiting for a close acknowledgement
from the Socket actor. The read result is also stored in thewait4 qid list.

rl[listener.readAck]:
[socketName:Qid readAck:Qid InQ,

st(wait4(socketName:Qid, (’listenercnx ’read)), es:ESe t),
OutQ]
=>

[nil,
st(wait4(socketName:Qid,

(’listenercnx ’close readAck:Qid InQ )), es:ESet),
OutQ socketName:Qid ’\n ’maude ’\n ’close ] .

When a close acknowledgement is received, if all is well, that is if

readAck:Qid == ’readOK ,

the read result with the first element removed (this is the number of bytes read)
is put in the input position, as a command for Mobile Maude to interpret, and the
control part of the state is set toready . If there is a problem, the user is informed
and the read result is discarded.

rl[listener.closeAck]:
[socketName:Qid closeAck:Qid InQ,

st(wait4(socketName:Qid,
(’listenercnx ’close readAck:Qid toks:QidList )),

es:ESet),
OutQ]

=>
(if ((readAck:Qid == ’readOK) and toks:QidList =/= nil)

then *** drop the count token
[rest(toks:QidList), st(ready,es:ESet), OutQ]

else
[nil, st(ready,es:ESet), OutQ
’user ’\n ’maude ’\n
’listenercnx readAck:Qid closeAck:Qid toks:QidList ’\n ] fi) .

A Pathway Logic model is a Maude module that specifies constants and con-
structors for biochemicals present in cells of interest, and rules describing reactions
that are the basic steps of metabolic and signal transduction processes. The Path-
way Logic Assistant is an IMaude actor that defines additional data structures and
operations to query and transform models, and to visualize models and query re-
sults. One of the data structures is aDGraph , a structure with nodes and edges
each possibly augmented by annotations. Annotations are used to record informa-
tion that can be used for determining how to render the graph,and what actions
are associated with different graph elements. The operation cseq2dg produces a
DGraph from the computation sequence resulting from a query askingfor a path
leading from an initial state to a state satisfying some desired condition. This is
done by implicitly transforming the path into a Petri net-like computation, since
there is a natural representation of Petri nets as graphs.

The following rule is the rule in the Pathway Logic Assistantmodule used to
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display such a graph. The graph must have been already generated and saved under
the name matchinggname:Qid . It is retrieved using the functionfindPetriG ,
and the functiondgraph2graphix prints the graph in a form that can be under-
stood by the Graphics actor, adding annotations for actionsand display instructions
such as colors and shapes of nodes and edges.

crl[display.petri]:
[ ’display ’petri gname:Qid InQ, st(ready,es:ESet), OutQ ]

=>
(if (pnetG:DGraph == mtDGraph )

then
[ nil, st(ready, es:ESet), OutQ

’user ’\n ’maude ’\n
’display ’petri ’no ’graph ’for gname:Qid InQ ]

else
[ nil,

st(ready, es:ESet), OutQ
’graphics ’\n ’maude ’\n

metaPrettyPrint(bpMod,
mkStrConst(dgraph2graphix(pnetG:DGraph))) ]

fi)
if pnetG:DGraph := findPetriG(es:ESet, gname:Qid) .

The functionmkStrConst converts its string argument into a quoted identi-
fier constant, processing special characters so thatmetaPrettyPrint produces
the desired string token. An example message sent to the Graphics actor by an
application of the above rule, and its display are shown in Section 4.

6 Related work

There are two aspects to the IOP/IMaude work. One is moving from a declara-
tive functional language to an interactive system while retaining a clean semantics,
and the other is interoperation of tools. Although we have not emphasized the
semantics aspect, we are relying on the basic ideas of interaction semantics for ac-
tors [17,18] to give semantics to Maude actors, without modifying the underlying
Maude system. An alternative approach is the idea of Functional Reactive Program-
ming (FRP) [19], where a functional language such as Haskell is extended with con-
structs such as Monads, Arrows, and I/O to support interaction. The basic Haskell
Library is then extended with primitives for graphics (HGL), robot controllers, and
so on. The IOP/IMaude approach is to provide a mechanism for communication
with tools or processes providing additional services rather than extending Maude.

The ToolBus [20] is a software coordination architecture. The ToolBus uti-
lizes a scripting language based on process algebra to describe the communication
between software tools, providing synchronous and a limited broadcast forms of
communication. To integrate a tool, an adapters must be written that translate be-
tween the internal ToolBus data format and the data format used by the individual
tools, and adapts it to the ToolBus communication protocols.

The IOP coordination model is simply asynchronous message passing taking
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strings to be the basic communication data. Building on the metalogical expres-
siveness of Maude, IMaude provides the ability to program coordination scripts
as desired. The IOP wrapper for non-interactive tools such as Maude or PVS is a
rudimentary form of adaptor for input/output byte streams.Some more advanced
adaptors have been programmed in IMaude (for example converting representa-
tions of graphs). In some cases generic adaptors could be useful, and perhaps we
will build on the ToolBus ideas. In the case studies carried out so far, the choice
of precisely what external representation to use depends oncontext, graphs being a
good example.

The Systems Biology Workbench (SBW) [21], is a modular, broker-based,
message-passing framework for communication between applications that aid in
research in systems biology. While Pathway Logic is aimed atqualitative models
represented using rewrite rules, the SBW focus is on kineticmodels represented us-
ing the SBML markup language (http://www.sbml.org ). SBW comes with a
simulator, plotter, adaptors for external simulators, anda generic simulation-control
GUI interface. Future work in the Pathway Logic project includes connecting the
Pathway Logic Workbench to SBW.

7 Conclusions and The Future

We have described IOP, a communications infrastructure that manages a dynamic
collection of actors including: basic communications actors, a Graphics actor, and
actors obtained by adapting existing tools to the communication infrastructure.
Currently both Maude and PVS have been adapted. We have also described the
IMaude module that support defining application specific behaviors for the Maude
actor. IOP is being used heavily in the Pathway Logic Projectto develop and ex-
periment with models of biological networks and processes.Its further develop-
ment will also be motivated by its use in several other current and pending Maude
projects.

Ongoing and future work includes systematic development ofGraphics ac-
tor and the algebra of interactive graphical objects; applications that make use of
the interoperation of Maude, PVS and other formal tools; further development of
IMaude; and development of an IOP developer toolkit.
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