WRLA 2004 Preliminary Version

|OP: The InterOperability Platform
&
IMaude: An Interactive Extension of Maude

lan A. Masori~*, and Carolyn L. Talcoft**

a University of New England, Armidale, NSW, Austradien@turing.une.edu.au
b SRI, Menlo Park, California, USAlt@csl.sri.com

Abstract

We describe a platform, 10P, for the interoperation of fdrmeasoning tools, and an adap-
tation of Maude, IMaude, that utilizes this platform. Thegmlications of IMaude and IOP
to real world problem domains are described.

Key words: Rewriting logic, interoperability, visualization.

1 TheAims

In order for formal tools to be more generally useful it is mnant that the tools
can interact with one another via simple, well defined, sdamally meaningful
communication interfaces. In addition it is important foloamal tool to provide
natural user friendly means of interaction.

The Maude systeni[2] is a high performance system based on rewriting logic
with many advanced features. Currently the means of infegaavith Maude is
via a command line interpreter. Typically, users that wantannect Maude to
other tools or provide alternative display mechanisms,trdasomething ad hoc,
for example with Perl scripts, Tcl/Tk, etc.

The IOP project is aimed at developing an infrastructureaftowing tools to
interoperate. It was motivated by the specific aim of makirgpssible for Maude
to communicate with other tools, including other instanmiatself, web resources,
visualization tools, theorem provers such as PVS, as wédl esad and write files,

* Most of the work described here was done while holding anrmhational Fellowship at SRI,
Menlo Park, partially supported by an Australian ResearohrtCil Discovery grant DP0345664,
and SRI grant CCR-0234462.
**Supported by DARPA through Air Force Research Laboratomyt@at F30602-02-C-0130, NSF
grants CCR-9900326, CCR-0234462, abd Office of Naval Rekgaontract NO0014-01-0837.
***Thanks to the anonymous referees and Mark-Oliver Stehrefipfll comments.

This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

MASON AND TALCOTT

and execute shell commands. The IOP interaction model tsofhactors B,4]
communicating via message passing, with the 0P regismyirggas local post
office. IOP comes with a basic set of actors including a Mautiersa PVS actor, a
Graphics actor, and communications actors that suppadkesadile system access,
and program execution. Additional actors can be added gasdy. The Maude
actor is aninteractiveextension of Maude that we call IMaude. It is interactive in
the sense that rewrite computations are interleaved wittmzonications with the
environment, and the IMaude’s state persists across comations. |IOP provides
the Maude programmer with a much richer modeling envirortmth support
for developing visualization and animation of Maude speatfons in interesting
ways, for exporting Maude modules to other tools (based bardormalisms) for
alternative analyses and visualizations, and for devetppbtions of session state
that can be saved and resumed. The reflective capability ofd®lanakes Maude
well suited to programming such interactions and has beetiatrin our studies
to date. Using the communication actors as a go-betweenylthuge actor can
talk to any tool that is capable of interacting via an intéreecket connection.
Although the main actor in the current IOP is the Maude ad¢@P, also currently
incorporates a PVS actor, and the basic IOP infrastrucsurelependent of Maude
and could be used to endow other tools with communicatioaluiéity. The I0OP
manual, binaries for Linux and Mac OS X, and setup instructiare available
at http://mcs.une.edu.au/"iam/IOP/ . The IMaude code is available at
http://www.csl.sri.com/"clt/IMaudeWeb/

The development of IOP has been largely driven by the paatiaueeds of
several substantial applications.§l2 we briefly sketch three of these applications:
the Pathway Logic Workbench, Mobile Maude, and the SCRa¥erwill then use
these examples to motivate the subsequent descriptiorFofi® 3 we describe the
IOP architecture. If§ 4 we describe the basic actors and rules for communication.
In § 5 we describe the core set of Maude modules that we use forgmoging
IMaude applications. We conclude with a discussion of fitlirections.

2 TheApplications

The Pathway Logic workbench is the first and most substaagplication using
IOP, serving as motivation and a testbed for the design avelalgment of the IOP
interface and actors. We discuss this application is sortaldend briefly discuss
additional features used by two other applications.

2.1 The Pathway Logic Workbench

Pathway logic $,6,7] is an application of Maude to modeling cellular networks—
collections of rules describing processes that transtutmmation (signal transduc-
tion) or transform chemicals (metabolism). Maude rulesifetwwork elements have
a form equivalent to

rfid]: p1 : 11 ... pk : |k => p2’ : I’ ... pm : Im’
2

http://mcs.une.edu.au/~iam/IOP/
http://www.csl.sri.com/~clt/IMaudeWeb/

MASON AND TALCOTT

wherepi : i is anoccurrence a protein or biochemicagli positioned within

a cell at the locatioti (membrane, nucleus, endosome ...). Once a set of rules is
represented in Maude, the biologist can use the PathwaylAsgistant to explore
the model structure and to ask questions, such as: starithgaveell containing
particular proteins and chemicals (in particular locatlocan a state be reached
matching a particular pattern. These can be answered usgogiton, search, and
model-checking in Maude, or by converting the model to ailretrand using Petri
net analysis tools. The network, subnets, and generatbd/ags can be visualized
using network graphs—graphs with a rule node for each rul@caurrence node
for each occurrence, and edges from left-hand-side oguesso the rule node and
from the rule node to right-hand-side occurrences. An auiive network graph
has actions associated either with the graph as a whole brpaiticular nodes.
For example, a rule node has an action that will display theidéacode for the
rule. An occurrence node in a subgraph can has an actiondieaios the subgraph
by adding any missing nodes and links associated the ocm#&reAn extendible
graph has action to undo the last extension. These actitms al biologist to
incrementally explore a complex graph.

Maude Model Pathway Graphics Actor

R i ;
epositor
P Y Model Editor ngIC S~ @
~ Assistant ! —

S A h
Ontology Model Explorer . AN) 1
I

S~ N [

1

v Sprites Graphs, Menus
Rules ~-ad
MetaData Import -
s
- BioNet Tool
’
|
Web Resources PetriNet
******************************** \ Editor Analyzer
s
] BioCyc .
(o] =)
S < =
= -mm
W : Sa—
S— i

Fig. 1. The Pathway Logic Workbench

A Pathway Logic workbench (figuré) is being developed to integrate the
Maude network models, the Pathway Logic Assistant, and #r®ws auxiliary
tools, such as the BioNet Petri net tool, the Dot graph drgwool, the IOP Graph-
ics actor, and (in the future) Biological databases and vesburces, and a GUI
for model development. IOP is the underlying infrastruetiar the Pathway Logic
workbench. We expect that this workbench architecture élluseful for many
Maude based applications, adding functionality and emgthe ability to visual-
ize and interact with Maude specifications.

3

MASON AND TALCOTT

The Pathway Logic Assistant is an IMaude program that semgesommand
interpreter and coordinator of interactions of Maude am@tools. The IOP com-
munications center (registry) routes requests to appatgptools, either sending
messages directly to IOP actors or using the executor acg®arid requests via the
underlying operating system and the Filemanager actomote stata to be passed
in a file. The Graphics actor is used to display interactiapbs and other visual-
izations.

2.2 Mobile Maude

To experiment with the use of Sockets and Listeners we buplo#otypical mo-
bile object example, using ideas from the Mobile Maude de§8} Here loca-
tions are different Maude actors each with a listener lisigron some port for
messages. The Maude actor is an IMaude program that can bghthof as an
interactive metaobject containing a configuration of palgsnobile objects as part
of its state §]. Each configuration contains a special actor for handlaguests
to install an object arriving from elsewhere. When there isessage to a remote
actor in the base configuration, the metaobject extracipéns a connection to the
remote listener, and transmits the message. Correspandimgreceiving metaob-
ject reads the message from its connection, and deliverghietbase configuration.
The metaobject only deals with sending and receiving messawt caring if the
message is a normal base-level message or if it transportdeenobject.

2.3 Animating Maude specifications: The SCRover

Providing a visual representation of Maude specificationgistributed systems
(system state and evolution) is important to make the spatifins meaningful to
non-experts, and also to help debug complex specifications.

As a first example, IOP is being used to develop visual, ictemarepresenta-
tions our model of the SCRover being developed as part of @k-NASA project
Formal Checklists for Autonomous Remote Ag¢h@11]. The objective of the
project is to provide higher assurance for software for dgggce missions by
developing a formal framework for specifying mission goatsl the elaboration
of goals to goal nets consisting of primitive constrainisttborrespond to device
driver commands to be achieved at specified time intervals.

Rover is visualized using a graphical object that knowsatsation and ori-
entation. In addition to responding to messages genergtedoise or keyboard
input, the rover object can receive messages from other tBi#sa Thus, like the
IMaude actor for mobility, the graphics actor must provide fhessages to and
from its contained graphical objects. For the initial caselg we defined an ad hoc
syntax for messages to the rover graphical object and tlotioea are hardwired
in Java code for the behavior of the rover graphical objespiregsented as a Java
object). Future work is to define a more general syntax focaisg active graph-
ical objects. Another task is to define module transfornmatithat automatically
add instrumentation for animating object system behavior.

4

MASON AND TALCOTT

3 TheArchitecture

IOP’s design is based on the actor model of distributed cdatjoun [4]. IOP con-
sists of a pool of actors that interact with one another vimelsronous message
passing. The pool of actors is dynamic, it may grow or shrskrae goes by. Ac-
tors can be initial actors, created at startup, or be créatexhother actor already
in the system in response to some event, such as an actoringcaimessage, or
reacting to some external action, such as a connection beadg to a socket. The
collection of actors created at startup is easily configierabd new actors can be
designed and added to the system.

An actor in IOP usually is simply a UNIX style process that baen registered
with the system according to a simple procedure. Part ofrgsstration process
involves allocating three FIFOs,or UNIX style named pipasg redirecting the
actor'sstdin , stdout andstderr file descriptors to these special filé<.

However, not all actors are single processes, some coff$igb @rocesses. For
example, the actors that correspond to formal reasoning tach as Maude and
PVS, usually consist of two processes: the process runhatpbl, and a wrapper
actor acting as a go-between for the tool and the underlyiegsage system.

There is no restriction on the language used to write an ‘actoript or exe-
cutable. Some are written in C, some are written in Java, somevritten in Perl.
One simply chooses the appropriate language for the desis&cr function that
the actor is supposed to perform. Actors can be single teceadmulti-threaded,
each according to its needs. They can even consist of sgyeisses written in
different languages. For example, the Graphics actor ttoaighes Maude, and any
other actor that wishes it, with a graphical toolkit, is weit in Java, and requires a
thin C process wrapper to interface with the FIFOs.

Apart from the autonomous actors in the system, IOP consisitsee indepen-
dent processes that interact. Tinain that creates and configures the system, the

registry, and a GUI front end.

The Registry

An Actor
-
e

An Actor

i il

A Two Process Actor
An Actor

After startup themain acts mainly as a signal handler, ensuring clean and
graceful shutdown. The registry keeps track of the curretdra, and maintains
the lines of communication between these actors. The GUl #ad provides the

5

14

MASON AND TALCOTT

user with an easy means of sending messages to any of the actbe system.
The upper part can used to compose messages to be sent tahay@P actors. It
can be loaded from a file and edits saved. The lower part gisjglay output from
the actors that isn’t inter-actor communication (errormessages to the user). The
main and registry are written in ANSI C using pthreads and the USpécifica-
tion Version 3 [L2], while the GUI front end is written using Java’s Swing ptath.
Neither themain , nor the registry, nor the GUI are considered as actors isyhe
tem, rather they are part of the communication infrastmgctWlOP currently runs
on Linux, and Mac OS X. Once Maude itself has been ported tgkbiora of
Windows platforms, a port to these will be constructed, ggit8]. The system
is designed to be self contained, robust, and extensiblger&ledifferent IOP’s
can run on the same machine without interfering with onefarothey can even
communicate with one another if the need arises, as it do#seimobile Maude
example.

The registry maintains a list of all the actors that are tegesl with it. It per-
forms several functions, and maintains three lines or fasht®mmunication. The
three forms of communication angter-actorcommunication, messages sent from
one actor to anotheMeta-actorcommunication, actors notifying the registry of
the birth or death of actor$nterfacecommunication, communication between the
registry and actors with the GUI front end. Each type of comivation has a
dedicated infra-structure that supports it. In the casetef-actorcommunication,
each registered actor in the system has three FIFOsnpl , associated with it,
For each actor in the system there are three dedicatedryetiistads one to mon-
itor each FIFO that is associated with the actstdin , stdout andstderr
file descriptors. The registry also has two FIFOs (agaifimp/) that are used
in various meta-communications, such as the registeriregrawly created actor,
or from an actor politely informing the system of its imminelemise. All files
in tmp/ incorporate into their name the unique process identifigheinain
process associated with them, hence multiple IOP’s on thme saachine do not
interfere with one another. Finally the registry commutesawith the GUI front
end by using two socket connections established at startup.

Inter-actor communication is purely ASCII text, and is implented in two
layers, the user layer, and the transport layer. In the p@mdayer a message
consists simply of a line of text representing a number f.éngeger in base ten),
followed by that specified number of bytes. The user layeplémented on top
of the transport layer, consists of the address of the tagfer, the address of the
sending actor, followed the body of the message, each on dimew

maude

graphics

show mauderule 23

This same message can be sent from the GUI by selektagle as the destina-

tion, and sending the teXgraphics show mauderule 23) . Either way
the message is transmitted in the transport layer as thesegquf bytes:

6

MASON AND TALCOTT

33\nmaude\ngraphics\nshow mauderule 23\n

Simple libraries implement the user layer on top of the foanislayer, and allow
for reliable cross platform and architecture independentraunication.

4 TheActors

As we have mentioned IOP is configurable, and the wealth afrach the sys-
tem depends on the desired application. In the examplesistied in§ 2, the
important actors are the Maude actor, the Filemanager,attrExecutor actor,
the Socketfactory, Listener, and Socket actors, and thplBrs actor. For a de-
tailed description of each actor and the syntax of the messapiests they support
see [L4].

The Maude Actor.

The Maude actor consists of two processes, one running thelddexecutable,
while the other, called therapper, acts as an intermediary between Maude and the
registry. Any error messages Maude emits are, like all cibtar’s error messages,
redirected to the error and output text area of the GUI frovak. eMaude’s output
is interpreted by the wrapper, and then translated to a foagweptable to the un-
derlyinginter-actorcommunication system. The process of interpretation stgsi
of replacing symbolic control characters suchwas \r ,\t ,\" , and\\ by the
appropriate control sequences themselves. So for exahmpbpibted identifier

"graphics\nmaude\n(string \"This is a string.\")"

would be interpreted by the wrapper as three lines of textt@mslated into a form
acceptable to the registry, which in turn would interpretsta message destined to
the graphics actor. The graphics actor in turn would intgrgras a request to
display the stringThis is a string." in a window:

This is a string. ’:

The Filemanager Actor.

The Filemanager actor provides any other actor in the syst#ina uniform
way to interact with the underlying file system. It accepts tbquests from any
actor to read, write, or append to files, and responds witlplg te the requesting
actor with a message containing the appropriate informasach as the result of
the read, or the success or failure of the write or append.

The Executor Actor.

The Executor actor provides the other actors in the systemtie ability to ex-
ecute any program they care to specify. The Executor actks faff a child process
to execute the requested command, and once the program isagdirexecuting,

7

MASON AND TALCOTT

the child process of the Executor actor replies with the exite of the requested
execution. For example, the messdgser gv foo.ps) sent from the GUI

to the executor actor would result in ghostview window dagpig the specified
postscript file. The executor is used by the Pathway Logidsfast to display

graphs using the GraphViz toolkit §].

The Socketfactory, Listener, and Socket Actors.

This trio of actors, or more accurately classes of actolswalany actor in the
IOP system simple structured access to the Internet. Issa@lr first example of
actors creating other actors in response to requests.

Initially, at startup, IOP contains a single Socketfactacyor. A Socketfactory
actor responds to two type of requests. It can create a Sigrlket actor connected
to a specified port on a possibly remote host, and if succesgflies with the name
of the newly created socket actor. Or it can create a Listpsiicket actor, listening
for connections on a particular port, and if successful plies with the name of
newly created listening actor. In both cases, if unsucoéstife Socketfactory
replies with an appropriate failure notification.

A Listener actor is created by a request fromli@nt actorto the Socketfac-
tory. The created Listener actor’s main task is to listenhenappropriate port, if a
connection occurs it creates a new Socket actor for thisexion, and notifies it's
client actor of the name of this newly created actor. Othantihis, the only other
thing a Listener can do is close itself in response to a ojpquest. In response to
a closing request the Listener actor closes the underlypegating system listening
socket, notifies the registry of its imminent demise, thetsex

A Socket actor is a simple interface to the underlying opegetystem’s socket.
An actor can ask a socket actor to write some number of bygad, some number
of bytes, or close itself. In the case of a read request, th&beu of bytes is taken
to be an upper limit. The Socket actor blocks until some bgtesavailable, it then
replies with the number of bytes actually read, and the yiesiselves. If the read
fails, the requesting actor is notified. In the case of a watpiest, the Socket actor
attempts to write that number of bytes to the underlying afieg system socket.

The GraphicsActor.

The Graphics actor creates graphical objects that the ndesther actors in the
system can manipulate. Like the Maude actor the Graphics &ca two process
system consisting of a POSIX C wrapper process and a subeedava process.
The Java process is written using Joel Bartlett's Ezd paekig), updated by the
first author to Java 2 and Swingyvax.swing . Joel's system uses the deprecated
Java 1.0 event system, as well as the antiquatedpackage.

The Graphics actor is a first step towards realizing a gramigebra with map-
pings between algebraic data types (as specified in Maudkg@phical objects
that have a related structure. Graphical objects are itieesand can be used to
interact with related Maude data structures. So far we hafieetl the following

8

MASON AND TALCOTT

graphical objects: Graphs, Menus, Text, Grids, Contajreerd Sprites. These ob-
jects are specified using a Lisp style syntax, and messagetosactive graphical
objects also have a Lisp style syntax.

As a sample we show a message to the graphics actor requesatgn of a
graph as part of a session with the Pathway Logic Assistant.

graphics

maude

(graph

(label qt)
(nodes
(node 0 ((label Glucose-out)(shape ellipse)(color lightC yan)))
(node 1 ((label Glutl-CMin)(shape ellipse)(color lightCy an)))
(node 2 ((label Glucose-CMin)(shape ellipse)(color light Cyan)))
(node 3 ((label Glutl-act-CM)(shape ellipse)(color light Cyan)))
(node 4 ((label 25)(shape box)(color white)

(onclick "maude\ngraphics\nshow mauderule 25")))

(edges
(edge 0 4 ((color magenta)(label i)))

0
(edge 1 4 ((color magenta)(label i)))
(edge 4 2 ((color green)(label 0)))
(edge 4 3 ((color green)(label 0)))))

The resulting display is shown in figug Theonclick node annotations are

L LI) 1
e
Glucose-out Glutl -CHin —
25]
o o
Clucoze-CHin Glutl -act-CH
-
1 | EiE151EiE151EiE151EiE151EiE1E252525252525252525252525252| |]

Fig. 2. A pathway graph

actions to execute when the user (shift-)clicks on the ndtley specify a message
to be sent by the Graphics actor. Thus (shift-)clicking anrtbde labeled 23 causes
a message to be sent to the Maude actor from the Graphics adgiorequest to
show the Maude rule 23. Maude replies with a text string wisdio be displayed
as shown in figure.

MASON AND TALCOTT

ril23.Glutl = Pyk2]:

“ECM | Pyk2 crmiSoup TLGIutt - act 7] T cvteSoup TR

=

PCM | cmiSoup T Glut? -act 7T L PykZ - act 71 T ayteSoup T 7Y

k]]

Fig. 3. The result of invoking the show rule action

5 IMaude

IMaude extends Maude to allow interactions with the envimment is to be inter-
leaved with steps of rewriting. IMaude can send messagastoageive messages
from other IOP actors (including the user) or communicatd wther systems via
files or sockets.

IMaude begins with theOOP-MODEnodule of core Maude.

mod LOOP-MODE is

protecting QID-LIST .

sorts State System .

op [, ,] : QidList State QidList -> System [ctor special (. 2] -
endm

This module is the mechanism used to support building userfates by providing
a basic read-eval-print loop. BOOP-MODBYystem has the forffinQ,S,outQ]
whereinQ andoutQ are lists of quoted identifiers (gids) agds the system state
that is rewritten using application specific rules provided module that includes
LOOP-MODEThe state persists between input/ouput actions untikibg is exited.
inQ is a stream that receives input directed to the loop fromdstachinput and
outQ corresponds to a stream connected to standard output. ThdeMakenizer
converts the input byte stream into a qid list (each qid regmés a token) and
conversely the output gid list is converted to a byte stregrklaude.

To develop a user interface usih@OP-MODBNe needs to define tigtate
data type and define rules for processing input from the isngam (see 2]
Chapter 11). In the case of core IMaude this is taken care ofhbymodule
INTERACTIVE and its imported modules, which is the starting point forliMaude
applications.

5.1 IMaude State

In IMaude aLOOP-MODIBBtate is a pair consisting of a control component of sort
Control and a set of entries of sdESet .

mod INTERACTIVE is
inc ENTRY .
inc CONTROL .
inc LOOP-MODE .
op st : Control ESet -> State .
. <application independent rules>
endm

The application independent rules are discussed belowieEBrare used to record
10

MASON AND TALCOTT

results of reductions and rewriting requests for later use.entry associates an
entry value, of sorEVal , with a pair consisting of a qid and a qid list. The qid is
the entry type, typically theOOP-MODEommand that generated the value and the
qgid list is used to identify the entry amongst those of theesgype, often simply
the command arguments. Entries ($ontry), with constructore and entry sets
(sortESet) are declared (in the moduENTRY as follows.

sorts Entry ESet EVal .

subsort Entry < ESet .

op none : -> ESet .

op _;_ : ESet ESet -> ESet [ctor assoc comm id: none] .

op e : Qid QidList EvVal -> Entry [ctor].
The sorteEVal serves as the union sort for the different values to be recbrdo
avoid sort confusion we use conversion functions to map sachof interest to
EVal s. The modul&ENTRYdefines a number of useful functions for manipulating
entries and entry sets, including functions to retrieve rnyefrom, add an entry
to, and remove an entry from an entry set. These functiongrerisat an entry set
has at most one entry for a given entry type and argument listhe LOOP-MODE
setting, printing means producing a qid list to put in thepptijueue. The function
showESet(es:ESet) prints the entries of thes:ESet , separated by newlines,
using the functioshowEntry(ee:Entry) . The IMaude programmer is obligated
to provide equations defining

showEntry(e(etype:Qid,gs:QidList,ev:EVal))

for each entry type used. These are typically defined alotig tive command (or
commands) that create a given entry type as shown belowdaeth entry type.
The moduleENTRYprovides two subsorts dfval : TermEVal and QEVal.
Elements of sortermEVal are pairs consisting of a qid naming the module, and a
Term metarepresenting a term of that module.
sort TermEVal .

subsort TermEVal < EVal .
op tm : Qid Term -> TermEVal .

Elements of sorQEVal are coerce®idLists

sort QEVal .
subsort QEVal < EVal .
op ql : QidList -> QEVal .

The control component of an IMaude system state is used ¢éordate when to
respond to particular inputs. Inputs can generally be fi@med into requests and
replies. Typically a reply is expected in response to a regsent by IMaude. The
control component indicates when IMaude is waiting for dy.efome incoming
requests can be handled at any time, others should not bptadaé IMaude is
waiting for a reply. At the moment, these requests are losténvironment should
not have sent them). A more robust version might queue thedatier consider-
ation. The module€ONTROIdeclares the soontrol , two constructors, and a
functionshowControl that converts a control element into a qid list for output.

11

MASON AND TALCOTT

sort Control .
op ready : -> Control [ctor] .
op wait4 : Qid QidList -> Control [ctor] .

op showControl : Control -> QidList .

eq showControl(ready) = ’'ready .

eq showControl(wait4(mtype:Qid, args:QidList)) =

('wait4 mtype:Qid args:QidList) .

The ready control indicates that IMaude is not waiting for anything. id
the initial value of the control component. Theit4(id:Qid,why:QidList)
control, as currently used, indicates that IMaude is wgitor a reply from an actor
identified byid:Qid , wherewhy:QidList contains information about the request
needing a reply and/or information about what to do when byrispeceived. Use
of thewait4 control will be illustrated below.

The moduldNTERACTIVE provides a number of rules for processing applica-
tion independent commands. The following are some examples

 (show control) prints the system control component, and sends the printed
representation to the user.

* (reset control) resets the control component to its initial state.

e (show entry <etype> <args>) prints the entry matching the type and ar-
gument qids.

* (remove entry <etype> <args>) removes the entry completely matching

the type and argument qids.
» (setq <vname> <vids>) adds an entrg('setq,<vname>,ql(<vids>))

» (let <vname> <modname> <sortname> <term>) adds an entry
e(’let,<vname>,tm(<modname>,resT)) ,WhereresT is the result of meta-
parsing and meta-reducing thgerm> list of gids in the module named by
<modname>

As an example we give the rule for processingesy request. We require that a
setq request only be accepted ineady state, to prevent external modification
of the entry set while processing another request.

ri[setq]:

['setqg vname:Qid InQ, st(ready, es:ESet), OutQ]

=>

[nil,

st(ready, addEntry(es:ESet, 'setq,vname:Qid, gl(InQ))) ,

'user '\n 'maude \n ’'setq vname:Qid InQ]

Here we use Maude’s inline variable declarations. For exammme:Qid de-
clares a variable with namame and sorQid . Inline declarations are completely
local, and two inline variables are considered the saméifvén equation or rule)
only if they have the same name and sort. The input comporfiéme gystem is set
to nil to indicate that this input has been processed and remowgedtfre input
buffer. The contents of the output component will be remoaed written to the

12

MASON AND TALCOTT

output stream by Maude as part of theOP-MODBemantics.
The equation for printing an entry of tygetq is
eq showEntry(e('setq, vname:QidList, gl(gs:QidList))) =
'setq vname:QidList qid(" = ") gs:QidList .
The operatiomid converts a string to a quoted identifier. Note that we haveaeu
the variable namename to declare a variable of so@idList . This was done to
remind us that although the argument list part of an entrylmaany qid list, we
expect that it will be a single gid, the variable name, for atneof typesetq .

5.2 [Maude applications

To give a flavor of IMaude programming, we give sample rulesnfthe Mobile
Maude application and the Pathway Logic application.

Mobile Maude extends the basic IMaude actor behavior wigathility to sup-
port communication between its contained object and abjexdiding in another
Mobile Maude actor (or any other actor that understands thgsage syntax). In
particular Mobile Maude listens (using a listener socketcbnnections from other
actors, reads a message from each new connection, and neakextions to other
Mobile Maude actors to send messages. There is a speciabéhtpeconf inthe
Mobile Maude state, initialized at start up, whose valudesmetarepresentation
of the object configuration it manages. Messages to extebjatts are extracted
from an object configuration using a functigatXmit and messages from exter-
nal objects are delivered using a functideliver . Both of these functions must
be provided as part of the specification of object configareti In addition the
base- and meta-levels must agree on the format of objecéssiels. For this initial
case study addresses are triples of the f(rrost,port,local-id)

As an example, we show the Mobile Maude rules used to read sagesrom
an external object. We assume that a Listener actor has beated and stored as
an entrye('setq, 'listener,gl(lIname:Qid)) When the remote actor opens
a connection, the receiver is informed of a new connectiadh wimessage con-
taining the name of the Listener actor, the messagengp€onnection , and the
name of the Socket actor created for the connection. In ressp@ read message
is sent to the new Socket actor from the Mobile Maude actoe Mbbile Maude
actor now waits for the Socket actor to reply, with argumesqtscifying that the
wait is for a read from a listener connection.

riflistener.newCnx]:
[lid:Qid 'newConnection socketName:Qid InQ,

st(ready, (es:ESet ; e('setq, 'listener, gl(lid:Qid)))),

OoutQ]

=>

[nil,
st(wait4(socketName:Qid, (listenercnx 'read)),
(es:ESet ; e('setq, 'listener, ql(lid:Qid)))),
OutQ socketName:Qid \n ’'maude '\n ’'read '10000] .

A read reply consists of the Socket actor's name, a readsstata the result of
13

MASON AND TALCOTT

the readnQ . A close message is sent to the Socket actor and the Mobile®&lau
actor waits for a reply, remembering that it is waiting fol@se acknowledgement
from the Socket actor. The read result is also stored invdig qid list.

ri[listener.readAck]:

[socketName:Qid readAck:Qid InQ,

st(wait4(socketName:Qid, (listenercnx 'read)), es:ESe 1),

OutQ]

=>

[nil,

st(wait4(socketName:Qid,

(listenercnx ’'close readAck:Qid InQ)), es:ESet),
OutQ socketName:Qid \n 'maude '\n ’close]

When a close acknowledgement is received, if all is wellt i &
readAck:Qid == ’'readOK ,

the read result with the first element removed (this is the bemof bytes read)
is put in the input position, as a command for Mobile Maudenteripret, and the
control part of the state is set teady . If there is a problem, the user is informed
and the read result is discarded.
riflistener.closeAck]:
[socketName:Qid closeAck:Qid InQ,
st(wait4(socketName:Qid,
(listenercnx ’'close readAck:Qid toks:QidList)),
es:ESet),
OutQ]
=>
(if ((readAck:Qid == ’'readOK) and toks:QidList =/= nil)
then *** drop the count token
[rest(toks:QidList), st(ready,es:ESet), OutQ]
else
[nil, st(ready,es:ESet), OutQ
‘'user '\n 'maude "\n
'listenercnx readAck:Qid closeAck:Qid toks:QidList \n] fi) .

A Pathway Logic model is a Maude module that specifies cotstamd con-
structors for biochemicals present in cells of interest, irhes describing reactions
that are the basic steps of metabolic and signal transauptimcesses. The Path-
way Logic Assistant is an IMaude actor that defines additidata structures and
operations to query and transform models, and to visualiadats and query re-
sults. One of the data structures i®&raph, a structure with nodes and edges
each possibly augmented by annotations. Annotations & tosecord informa-
tion that can be used for determining how to render the grapt,what actions
are associated with different graph elements. The operatieq2dg produces a
DGraph from the computation sequence resulting from a query asking path
leading from an initial state to a state satisfying somerddstondition. This is
done by implicitly transforming the path into a Petri néelicomputation, since
there is a natural representation of Petri nets as graphs.

The following rule is the rule in the Pathway Logic Assistambdule used to

14

MASON AND TALCOTT

display such a graph. The graph must have been already ¢esharad saved under
the name matchingname:Qid . It is retrieved using the functiofindPetriG
and the functiordgraph2graphix prints the graph in a form that can be under-
stood by the Graphics actor, adding annotations for acaodgisplay instructions
such as colors and shapes of nodes and edges.
crl[display.petri]:
['display 'petri gname:Qid InQ, st(ready,es:ESet), OutQ]
=>
(if (pnetG:DGraph == mtDGraph)
then
[nil, st(ready, es:ESet), OutQ
‘'user \n 'maude '\n
'display ’'petri 'no 'graph ‘for gname:Qid InQ]
else
[nil,
st(ready, es:ESet), OutQ
‘graphics \n 'maude '\n
metaPrettyPrint(bpMod,
mkStrConst(dgraph2graphix(pnetG:DGraph)))]
fi
if ?anetG:DGraph = findPetriG(es:ESet, gname:Qid)

The functionmkStrConst converts its string argument into a quoted identi-
fier constant, processing special characters sontle&iPrettyPrint produces
the desired string token. An example message sent to thehi@sapctor by an
application of the above rule, and its display are shown utiSe4.

6 Related work

There are two aspects to the IOP/IMaude work. One is moviogn fa declara-
tive functional language to an interactive system whilairehg a clean semantics,
and the other is interoperation of tools. Although we haveamphasized the
semantics aspect, we are relying on the basic ideas of atil@nasemantics for ac-
tors [17,18] to give semantics to Maude actors, without modifying thelentying
Maude system. An alternative approach is the idea of FumatiReactive Program-
ming (FRP) L9], where a functional language such as Haskell is extendédoon-
structs such as Monads, Arrows, and I/O to support intevaciThe basic Haskell
Library is then extended with primitives for graphics (HGEgbot controllers, and
so on. The IOP/IMaude approach is to provide a mechanismdimmunication
with tools or processes providing additional servicesaathan extending Maude.

The ToolBus £0Q] is a software coordination architecture. The ToolBus uti-
lizes a scripting language based on process algebra talgedoe communication
between software tools, providing synchronous and a lanit@adcast forms of
communication. To integrate a tool, an adapters must beenrihat translate be-
tween the internal ToolBus data format and the data formed by the individual
tools, and adapts it to the ToolBus communication protocols

The IOP coordination model is simply asynchronous messagsimg taking

15

MASON AND TALCOTT

strings to be the basic communication data. Building on tle¢aiogical expres-
siveness of Maude, IMaude provides the ability to programrdimation scripts

as desired. The IOP wrapper for non-interactive tools sgdilaude or PVS is a
rudimentary form of adaptor for input/output byte strearSsme more advanced
adaptors have been programmed in IMaude (for example dimyeepresenta-

tions of graphs). In some cases generic adaptors could el ,usmed perhaps we
will build on the ToolBus ideas. In the case studies carrietlso far, the choice
of precisely what external representation to use dependsmext, graphs being a
good example.

The Systems Biology Workbench (SBW21], is a modular, broker-based,
message-passing framework for communication betweencapiphs that aid in
research in systems biology. While Pathway Logic is aimeguatitative models
represented using rewrite rules, the SBW focus is on kimetidels represented us-
ing the SBML markup languagéitp://www.sbml.org). SBW comes with a
simulator, plotter, adaptors for external simulators, ageneric simulation-control
GUI interface. Future work in the Pathway Logic project urd#s connecting the
Pathway Logic Workbench to SBW.

7 Conclusionsand The Future

We have described IOP, a communications infrastructurentiadages a dynamic
collection of actors including: basic communications axta Graphics actor, and
actors obtained by adapting existing tools to the commtioicanfrastructure.
Currently both Maude and PVS have been adapted. We have edsoilted the
IMaude module that support defining application specificavedrs for the Maude
actor. IOP is being used heavily in the Pathway Logic Prdjectevelop and ex-
periment with models of biological networks and procesdesfurther develop-
ment will also be motivated by its use in several other curagd pending Maude
projects.

Ongoing and future work includes systematic developmen&@phics ac-
tor and the algebra of interactive graphical objects; @agilbns that make use of
the interoperation of Maude, PVS and other formal toolsthierr development of
IMaude; and development of an IOP developer toolkit.

References

[1] http://maude.cs.uiuc.edu . The Maude Homepage.

[2] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oljel. Meseguer, and C. Talcott.
Maude 2.0 Manual, 200$ttp://maude.csl.sri.com/maude2-manual

[3] Henry G. Baker and Carl Hewitt. Laws for communicatinggikel processes. IHFIP
Congresspages 987-992. IFIP, August 1977.

[4] G. Agha. Actors: A Model of Concurrent Computation in Distributedst&yns MIT
Press, Cambridge, Mass., 1986.

16

http://www.sbml.org
http://maude.cs.uiuc.edu
http://maude.csl.sri.com/maude2-manual

MASON AND TALCOTT

[5] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, and C. TalcotPathway Logic:
Executable models of biological networks. Fourth International Workshop on
Rewriting Logic and Its Applications/olume 71 ofElectronic Notes in Theoretical
Computer Scienceéelsevier, 2002.

[6] C. Talcott, S. Eker, M. Knapp, P. Lincoln, and K. LademuPathway logic modeling
of protein functional domains in signal transduction. Rroceedings of the Pacific
Symposium on Biocomputinganuary 2004.

[7] http://www.csl.sri.com/users/clt/PLWeb/ . Pathway Logic, 2004.

[8] Francisco Duran, Steven Eker, Patrick Lincoln, andéJeseguer. Principles of
Mobile Maude. InAgent Systems, Mobile Agents, and Applications, ASA/MA, 200
volume 1882 ofLecture Notes in Computer Sciengages 73—-85. Springer-Verlag,
2000.

[9] J. Meseguer and C. L. Talcott. Semantic models for distéd object reflection. In
European Conference on Object-Oriented Programming, EEQQ02 volume 2374
of Lecture Notes in Computer Sciengages 1-36, 2002. invited paper.

[10] Grit Denker and Carolyn Talcott. Maude specificatiornttod MDS architecture and
examples. IrFifth International Workshop on Rewriting Logic and Its Aipations
(WRLA'2004) 2004. this proceedings.

[11] http://www.csl.sri.com/users/denker/remoteAgents/ . Formal
checklists for remote agent dependability, 2004.

[12] http://www.unix-systems.org . The Single UNIX Specification Version 3
Homepage.

[13] http://sources.redhat.com/pthreads-win32/ . The Open Source
POSIX Threads for Win32 Homepage.

[14]lan A. Mason and Carolyn C. Talcott. The IOP Manual —
http://mcs.une.edu.au/"iam/IOP/

[15] http://www.research.att.com/sw/tools/graphviz/ . The GraphViz
Homepage.

[16] Joel Bartlett. Ezd - easy-to-use structured graphicer fJava.
http://research.compaqg.com/wrl/projects/Ezd/home.ht mi.

[17] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A faation for actor
computation.Journal of Functional Programming’:1-72, 1997.

[18] C. L. Talcott. Actor theories in rewriting logicTheoretical Computer Scienc85(2),
2002.

[19] Paul Hudak, Antony Courtney, Henrik Nilsson, and JolateFson. Arrows, robots,
and functional reactive programming. 8ummer School on Advanced Functional
Programming 2002, Oxford Universijtizecture Notes in Computer Science. Springer-
Verlag, 2003. To Appeatr.

17

http://www.csl.sri.com/users/clt/PLWeb/
http://www.csl.sri.com/users/denker/remoteAgents/
http://www.unix-systems.org
http://sources.redhat.com/pthreads-win32/
http://mcs.une.edu.au/~iam/IOP/
http://www.research.att.com/sw/tools/graphviz/
http://research.compaq.com/wrl/projects/Ezd/home.html

MASON AND TALCOTT

[20] J. A. Bergstra and P. Klint. The discrete time toolbus-sedtware coordination
architecture.Science of Computer Programmirfl:205—-229, 1998.

[21] M. Hucka, A. Finney, H. Sauro, H. Bolouri, J. Doyle, and Kitano. The ERATO
systems biology workbench: Enabling interaction and emgbhabetween software
tools for computational biology. IProceedings of the Pacific Symposium on
Biocomputing 2002.

18

	The Aims
	The Applications
	The Pathway Logic Workbench
	Mobile Maude
	Animating Maude specifications: The SCRover

	The Architecture
	The Actors
	IMaude
	IMaude State
	IMaude applications

	Related work
	Conclusions and The Future
	References

