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Abstract

This paper describes representations of biological processes based on Rewriting Logic
and Petri net formalisms and mappings between these representations used in the Pathway
Logic Assistant. The mappings are shown to preserve properties of interest. In addition
a relevant subnet transformation is defined, that specializes a Petri net model to a specific
query to reduce the number of transitions that must be considered when answering the
query. The transformation is shown to preserve the query in the sense that no answers are
lost.

Keywords: signal transduction, biological process, Pathway Logic, Rewriting Logic,
Petri Net

1 Introduction
Pathway Logic [EKL+02a, EKL+02b, TEK+04] is an approach to modeling cellular processes
based on formal methods. In particular, formal executable models of processes such as signal
transduction, metabolic pathways, and immune system cell-cell signaling are developed using
the rewriting logic language Maude [CDE+03a, CDE+03b] and a variety of formal tools are
used to query these models. An important objective of Pathway logic is to reflect the ways that
biologists think about problems using informal models, and to provide bench biologists with
tools for computing with and analyzing these models that are natural.

Using the reflective capabilities of Maude, several alternative representations are derived
to support use of different tools for visualization and analysis. The Pathway Logic Assistant
(PLA) manages these different representations and, using the IOP+IMaude framework [MT04],
provides a user interface that supports visualization and interaction with the models, and ac-
cess to tools such as the Pathalyzer for carrying out in silico experiments. In particular, PLA
uses Petri nets which provide visual representations and algorithms for answering reachability
queries interactively, displaying the results in a way that is natural for biologists.

Being able to use alternative representations with different expressive capabilities and tools
for analysis is important both for scaling and being able to focus on different properties. In the
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presence of multiple representations it is crucial to be able move between representations in se-
mantically meaningful ways, preserving relevant properties. In this paper we describe a class
of rewriting logic models of biological processes and a mapping of these models to Petri net
models. We show that this mapping preserves computations and satisfaction of temporal for-
mulae. Finally, we describe transformations that specialize Petri net models to specific queries
by reducing the set of transitions that need to be considered, and show that transformations are
safe in the sense that query results are not changed.

Plan. The remainder of this paper is organized as follows. This section concludes with a dis-
cussion of related work. To provide context and motivate the technical results, a brief overview
of Pathway Logic and the ways that biologists can compute with and query Pathway Logic
models is given in section 2. In section 3 the notion of occurrence-based rewrite theory is de-
fined and mappings between such theories and Petri net models are defined and shown correct.
The notion of subnet relevant for a particular query is introduced in section 4, and transforma-
tions for producing a safe approximation to the relevant subnet are defined. Section 5 concludes
with a summary and discussion of future directions.

1.1 Related Work
Models of biological systems have been developed using a variety of computational formalisms
and logics originally intended for modeling and analysis of computer systems. Much of the ef-
fort has been devoted to developing techniques to represent relevant biological concepts and
to simulate their behavior Examples include Petri Nets [Hof94, RLM96, ZOS03]; variants of
the Pi-calculus [RSS01, PRSS01]; membrane systems [PJRC05], Statecharts [EHC03]; and
Live Sequence Charts [KHK+03]. Some modeling approaches based on computational or log-
ical formalisms also use the associated logic to analyze and reason about the models. Exam-
ples include Pathway Logic [EKL+02b, TEK+04]; BioCham [FSCR04, CRFS04, CRCD+04,
CCRF+05]; BioAmbients [RPS+03, NNPR03, PNN05]; BioSigNet-RR [STBK05]; and rea-
soning about continuous time Markov chains using continuous time stochastic logic [CVGO05].

The Pathway Logic Assistant extends the basic representation and execution capability
with the ability to support multiple representations, to use different formal tools to simplify
and analyze the models, and to visualize models and query results. Other efforts to integrate
tools for manipulating models include the Systems Biology Workbench [HFS+02] the Biospice
Dashboard [Bio04], IBM Discoverylink [IBM04], and geneticXchange, Inc [gen04].

2 Pathway Logic
As mentioned above, Pathway Logic models of biological processes are developed using the
Maude system [CDE+03a, CDE+03b] a formal language and tool set based on rewriting logic.
Rewriting logic [Mes92] is a logical formalism that is based on two simple ideas: states of a
system are represented as elements of an algebraic data type; and the behavior of a system is
given by local transitions between states described by rewrite rules. Algebraic data types are
specified by declaring sorts (names of the data types), subsort relations (one data type may
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be a subset of another), and operations (naming functions and specifying argument and result
types), and by giving equations that define the functions computed by the operations. Terms t
that denote elements of the data types can be variables (denoting some unspecified element),
constants, or the application of an operation to a tuple of argument terms, f(t1, . . . , tn). In its
simplest form, a rewrite rule has the form t ⇒ t′ where t and t′ represent a local part of the
system state. This rule says that when the system has a subcomponent matching t, that sub-
component can evolve to t′, possibly concurrently with changes described by rules matching
other parts of the system state. The process of application of rewrite rules generates computa-
tions (also thought of as deductions). In the case of biological processes these correspond to
paths. Using reflection, modules and computations are represented as terms of the Maude meta
language. This makes it easy to compute with models and paths.

2.1 Pathway Logic Basics
Pathway Logic models are structured in four layers: (1) sorts and operations, (2) components,
(3) rules, and (4) queries. The ‘sorts and operations’ layer defines the main sorts, subsort re-
lations, and operations for representing cell states. The sorts of entities include Chemical,
Protein, DNA, Complex, and Enclosure (cells and other compartments). These are all
subsorts of the sort, Soup, that represents ‘liquid’ mixtures, as multisets. The sort Dish is
introduced to encapsulate a soup as a state to be observed. Post-translational protein modifi-
cation is represented by terms of the form [P - mods] where P is a protein and mods is a
set of modifications. Modifications can be abstract, just specifying being activated, bound, or
phosphorylated, or more specific, such as, phosphorylation at a particular site. For example,
the term [Cas - act] represents the activation of the protein Cas. A cell state is represented
by a term of the form {CM | cm { cyto }} where cm stands for a soup of entities in or at
the cell membrane and cyto stands for a soup of entities in the cytoplasm.

The components layer specifies particular entities (proteins, chemicals, DNA) and intro-
duces additional sorts for grouping proteins in families. For example ErbB1L is declared to be
a subsort of Protein. This is the sort of ErbB1 ligands whose elements include the epidermal
growth factor EGF. The rules layer contains rewrite rules specifying individual signal transduc-
tion steps representing processes such as activation, phosphorylation, complex formation, or
translocation. The queries layer specifies initial states and properties of interest.

Below we give a brief overview of the representation in Maude of signal transduction
processes, illustrated using a model of Rac1 activation. This model and several others are
available as part of the Pathway Logic Demo available from the Pathway Logic web site
http://www.csl.sri.com/∼clt/PLweb along with papers and tutorial material.

2.2 Example Pathway Logic Model: Activation of Rac1
Rac1 is a small signaling protein of the Ras superfamily. It functions as a protein switch that
is “on” when it binds the nucleotide triphosphate GTP, and “off” when it binds the hydrolysis
product GDP. The Pathway Logic model of Rac1 activation was curated using [SH02] and
many other references (cited as metadata associated with individual rules). In the following
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we show an initial state for study of Rac1 activation and two example rules, and briefly sketch
some of the ways one can compute with the model. The initial state (called rac1demo) is a
dish PD( ... ) with a single cell and two stimuli in the supernatant, EGF and FN, represented
by the following term.

rac1demo = PD(FN EGF
{CM | EGFR Ia5Ib1 Src PIP2 [Actin - poly][HRas - GDP][Rac1 - GDP]

{Crk2 Erk2 Mek1 PI3K Shp2 bRaf C3g Dock Sos1
Cas E3b1 Elmo Eps8 Fak Gab1 Grb2 Vav2 }} )

The cell membrane (shown on the line beginning CM) has an EGF receptor (EGFR) and an
integrin (Ia5Ib1) that binds to FN. The term [Rac1 - GDP] represents the Rac1 protein in
its ‘off’ state. The cell cytoplasm (shown on the last two lines) contains additional proteins that
participate in the signaling process.

One way to activate Rac1 begins with the activation of the EGFR receptor due to the pres-
ence of the EGF ligand. The following rule represents this signaling step.

rl[1.EGFR.is.act]:
?ErbB1L:ErbB1L {CM | cm EGFR {cyto }} =>
?ErbB1L:ErbB1L {CM | cm [EGFR - act] {cyto }} .

*** ErbB1Ls are AR EGF TGFa Btc Epr HB-EGF

The term ?ErbB1L:ErbB1L is a variable ranging over the sort ErbB1L. The rule matches
a part of the rac1demo dish contents by binding the variable ?ErbB1L:ErbB1L to EGF, the
variable cm to Ia5Ib1 ... [Rac1 - GDP] (every thing in the cell membrane except EGFR),
and the variable cyto to the contents of the cytoplasm {Crk2 ... Vav2}. Applying the rule
replaces EGFR by [EGFR - act] resulting in the dish

PD(FN EGF
{CM | [EGFR - act] Ia5Ib1 Src PIP2 [Actin - poly]

[HRas - GDP][Rac1 - GDP]
{Crk2 Erk2 Mek1 PI3K Shp2 bRaf C3g Dock Sos1
Cas E3b1 Elmo Eps8 Fak Gab1 Grb2 Vav2}} )

The following is one of three rules characterizing conditions for the Rac1 switch to be turned
on.

rl[256.Rac1.is.act-3]:
{CM | cm [Cas - act][Crk2 - act][Dock - act] Elmo [Rac1 - GDP]

{cyto }} =>
{CM | cm [Cas - act][Crk2 - act][Dock - act] Elmo [Rac1 - GTP]

{cyto }} .

This rule describes activation resulting from assembly of Elmo with activated Cas, Crk2, and
Dock at the cell membrane. The terms cm and cyto are variables standing for the remain-
ing components in the membrane and cytoplasm, respectively. Executing the rule replaces
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[Rac1 - GDP] by [Rac1 - GTP], turning Rac1 on, and leaves the remaining components
unchanged.

Maude provides several ways to compute with a model. One can rewrite an initial state
such as rac1demo above, to see a possible final state, or search for all states satisfying some
predicate. To find a path satisfying some (temporal logic) property the Maude model-checker
can be used. The properties of interest are expressed in Maude as patterns matching states with
specific proteins, possibly with modifications, occurring in particular compartments (called
goals), or requiring that particular proteins do not appear (avoids). For example, to find the
path stimulated by FN alone, we define a property (called racAct3) that is satisfied when
Rac1 is activated and the EGF stimulus is not used (EGFR is not activated), thus forcing the
FN stimulus to be selected. The property racAct3 is axiomatized by assertions stating which
dishes satisfy the property (the relation |=) using patterns such as the following.

ceq PD (out:Soup
{CM | cm:Soup [Rac1 - GTP] {cyto:Soup}}) |= racAct3 = true .

if not(cm:Soup has [EGFR - act])

The model-checker is asked to check the assertion that there is no computation satisfying this
property and a path can be extracted from a counterexample if one is found.

A Pathway Logic model, such as the Rac1 model, meeting certain simple conditions can
be transformed into a Petri net model by specializing the rules to the model’s initial state. The
resulting Petri net model can then be analyzed using special purpose analysis tools.

Our Petri net models are a special case of Place-Transition Nets given by a set of occur-
rences (places in Petri net terminology) and a set of transitions. Occurrences can be thought of
as atomic propositions asserting that a protein (in a given state) or other component occurs in
a given compartment. A system state is a set of occurrences (called a marking in Petri net ter-
minology), giving the propositions that are true. A transition is a pair of sets of occurrences. A
transition can fire if the state contains the first set of occurrences. In which case the first set of
occurrences is replaced by the second set. Maude goal properties translate to Petri net proper-
ties expressed as occurrences that must be present (places to be marked) and avoids properties
translate to occurrences that must not appear (places not to be marked) in a computation.
Figure 1 shows the result of the Petri net query corresponding to racAct3 found by the
LoLA [LoL04] Petri net analysis tool, as displayed by PLA using the Pathalyzer tool. For
compactness, a computation/path is represented simply as a network of transitions, namely
those used in the computation, with the occurrences in the initial state identified by giving
them a darker color.

Lola uses “stubborn set reduction”, which is a technique that exploits the ease of deter-
mining the independence of certain transitions in the Petri nets. For reachability queries on
our nets, answering a reachability query that would have taken hours using a general purpose
model-checking tool takes on the order of a second in LoLA—fast enough to permit interactive
use.
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Figure 1: FN stimulation of Rac1 activation as a Petri net

2.3 The Pathway Logic Assistant
The Pathway Logic Assistant (PLA) manages the different model and computation represen-
tations and provides functions for moving from one representation to another, for answering
user queries, displaying and browsing the results. The principle data structures are: PLMaude
models, Petri net models, Petri subnets, PNMaude modules, computations (paths), and petri-
graphs. Here we give an overview of the PLMaude and Petri net models and mappings between
them. Details are given in the next section, where we define the notion of occurrence-based
rewrite theory that abstracts the relevant features of PLMaude models, and specify the main
properties required for mappings between and transformations of representations.

PLMaude models are Maude modules having the four layer structure described in the pre-
vious section, subject to the restriction that the rules preserve the property that component
occurrences are not duplicated. As discussed above PLMaude states are represented as a mix-
ture of cells and ligands where location of proteins and other chemicals is represented by the
algebraic structure of a term. We define an alternative representation using multisets of oc-
currences, where an occurrence is a pair consisting of a protein, complex, or other chemical
component and a location. The location uniquely identifies the position of the component
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within the algebraic term (modulo multiset equality). For example, the dish

PD(EGF {CM | EGFR {Erk2}})

is represented by the occurrences

< EGF,out > < EGFR,cm > < Erk2,cyto >

Although soups and occurrences are formalized as multisets, initial states contain only sets (no
duplication) and we have required that PLMaude rules preserve this property.

A Petri net model is a pair (T , I ) consisting of a set of transitions T , and an initial state
I (a set of occurrences). Each transition consists of a rule identifier, a pair of occurrence sets
(the pre-occurrences and the post-occurrences). The mapping of a PLMaude model, with a
specified initial dish D, to a Petri net model first determines an upper approximation to the set
of components that might occur in each dish location by a collecting operation. This is done
by starting with D, and repeating the collection cycle until nothing new is collected. In the
collection cycle, for each rule that can be applied to the current dish, the current dish is merged
with the result of applying the rule (by adding any new components to each compartment). For
example, applying the rule [1.EGFR.is.act] the dish rac1demo in collecting mode would
add [EGFR -act] to the membrane rather using it to replace EGFR. The set of transitions
T is then the set of rule instances that apply to the collected dish, converted to occurrence
pairs. For example the rule [1.EGFR.is.act] instantiated with EGF for ?ErbB1L:ErbB1L
is represented by the triple

(1.EGFR.is.act, < EGF, out > < EGFR, cm >,
< EGF, out > < [EGFR - act], cm >)

The initial state I is the conversion of D to the occurrence representation. Because of the set
preserving property of PLMaude rules mentioned above, the resulting Petri net model has the
special form known as 1-safe, meaning that states are sets of occurrences, not more general
multisets. This is important since efficient analysis algorithms have been developed for such
Petri nets.

A Petri subnet is a tuple (T , I ,G ,A) consisting of a set of transitions, T , an initial marking,
I a goal marking G , and an avoids set A. A Petri subnet specifies an analysis problem, namely
finding a computation starting from the initial marking, and reaching a state with the goals
marked, using the transitions in the given set, without ever marking an avoid. Petri subnets
are generated by a ‘relevant subnet’ computation that simplifies the specified analysis problem.
Although a Petri subnet is a Petri net, it is only equivalent to the original net for a goal set that
is a subset of G or an avoid set that is a superset of A. For example, for a goal that is not in G
there may be a path in the original net, but not in the subnet, since transitions needed for this
goal may have been discarded as not being relevant.

Computations are data structures used to represent system executions. We model a com-
putation as a sequence of steps, each step being a triple consisting of a source state, a rule
instance or transition that applies to that state, and a target state, the state resulting from the
rule application. The target state of the ith step of a computation must be equal to the source
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state of the i + 1st step. A compact representation of a computation is the initial state together
with the set of rule instances. We call the set of rule instances a path.

Petri graphs are used to represent Petri net models, subnets, and computations as data struc-
tures that have both a natural visual representation, and a clear connection to the computational
structure. A petri graph has two kinds of node: occurrence and rule. Edges connect nodes
representing occurrences of a rule premiss (lhs) to the rule node and the rule node to the nodes
representing occurrences of the rule conclusion (rhs).

3 Relating PLMaude and Petri Nets
It is well known that Petri nets can be represented in rewriting logic [Ste00]. The various forms
of PLMaude models have taken as the modeling ideas have matured have led us to identify a
special class of rewrite theories, called occurrence-based rewrite theories, that, restricted to
terms reachable from a given initial term, have a natural representation as Petri nets. The
idea is to build on the equivalence of the dish and occurrences representations of states and
to identify the features of PLMAude models needed to ensure that the translation to the Petri
net formalism preserves computations and goals-avoids properties. Furthermore, the resulting
Petri net models can be transformed back into rewriting logic, again preserving computations
and goals-avoids properties. In this section we define the mappings between PLMaude and
Petri net models and the subnet reduction, and sketch proofs of correctness. These mappings
are implemented in Maude and used in PLA.

3.1 Some rewriting logic notation
We first introduce some notation for talking about rewrite theories. A rewrite theory, R, is
a triple ((Σ,E ),R) where (Σ,E ) is an equational theory (for example, in order sorted logic)
with sorts and operations given by Σ and equations E , and R is a set of rules of the form
(t0 ⇒ t1 if c) where t0, t1 are terms, the rule premise and conclusion respectively, and c is a
boolean term, the rule condition. Viewing PLMaude as a rewrite theory, (Σ,E ) is given by the
first two layers (sorts and operations, components) and R is given by the rules layer.

A context, C , is a term with a single hole, denoted by [ ], used to indicate the location of a
rewrite application. C [t] is the result of placing t in the hole of C .

A substitution σ is a finite mapping from variables to terms, preserving sort, and σ(t) is the
result of applying σ to the term t.

A rule instance is a triple ρ = (r ,C , σ) where r is a rule, C is context, and σ is a substitu-
tion. For a rule instance ρ as above we write t

ρ−→ t′ if t = C [σ(t0)], t′ = C [σ(t1)], and σ(c)
holds (rewrites to true). In this case we say that ρ is an application of r to t. We write t

r−→ t′ if
there is some ρ = (r ,C , σ) such that t

ρ−→ t′. A computation over R is a sequence of rewrites
of the form

R $ s0
ρ1−→ s1 . . .

ρk−→ sk

with steps si−1
ρi−→ si for 1 ≤ i ≤ k.
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Note that rewriting is modulo E , that is the meaning of of the symbol ‘=’ in the matching
equations is defined by the equational theory E . The context makes explicit the location within
a term where the rule applies. This is needed because when rewriting modulo equations the
usual notion of path to a subterm of a syntax tree is not meaningful.
Rewriting Example. As an example, consider the following:

• S0 = EGF {CM | EGFR {Mek1 [Mekk3 - act]}}

• S1 = EGF {CM | EGFR {[Mek1 - act] [Mekk3 - act]}}

• rmek = [Mekk3 - act] Mek1 => [Mekk3 - act] [Mek1 - act]

• C = EGF {CM | EGFR {[]}}

Then ρ = (r, C, ∅) is rule instance (with empty substitution, ∅) such that S0
ρ−→ S1. Note

that S0 can also be written EGF {CM | {Mek1 [Mekk3 - act]} EGFR}. Syntactically the
subterm that matches the rule right hand side is at a different position in this case, but modulo
associativity and commutativity the two ways of writing the term have the same meaning.
The corresponding context EGF {CM | {[]} EGFR} is also equivalent to C, thus giving a
representation of position that is independent to the representation of equivalence class.

3.2 Occurrence-based rewrite theories
There are five conditions to be met for a rewrite theory to be an occurrence-based rewrite
theory, two conditions on the representation of state (SC1 and SC2) and two conditions on
rules (RC1, RC2) and one condition on the interaction of states and rules SRC).

In the following assume we are given a rewrite theory, R, with distinguished sort S of
elements representing system states to be analyzed.

SC1. The first condition is that S is generated from a base sort, by constructors such as the
PLMaude enclosure constructors, in such a way that one only needs to know the ‘location’ of
the base subterms to determine an element of S. More precisely, we require that there be a base
sort B, a sort L, of locations, and a sort O of occurrences, where elements of O have the form
<b, l> for base element b and location l, and two functions

s2o(_) : S→ Pω[O] and o2s(_) : Pω[O]
p→ S

such that o2s(s2o(s)) = s where p→ denotes partial functions and Pω[O] denotes finite sets
from O.

In PLMaude, the base sort is called Thing, which has subsorts Protein and Chemical
amongst others. Each membrane enclosed compartment has two associated locations, the mem-
brane and the interior. For example, a cell has locations cm and cyto, and things not inside a
cell have location out.

SC2. We extend s2o(_) to contexts and terms with variables, by treating holes and variables as
basic terms, and we require a function cloc(C ) that gives the location of the hole in a context.
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We also relativize the map from states to occurrences so that s2o(t, l) gives the occurrences for
t in a context with hole location l. Thus

s2o(C [t]) = O ∪ (s2o(t, l)) where l = cloc(C ), s2o(C ) = O ∪<[ ], l>.

The SC2 requirement is that if s2o(s0) = O ∪ s2o(σ(t0), l) then we can find C such that
cloc(C ) = l and s0 = C [σ(t0)].
Rewriting Example continued I. Using the notation of the example from section 3.1, we
have

• s2o(S0) =
< EGF,out > < EGFR,cm > < Mek1,cyto > < [Mekk3 - act],cyto >

• cloc(C) = cyto

• s2o(S2, cloc(C)) = < Mek1,cyto > < [Mekk3 - act],cyto >

where S2 is the left-hand side of rmek. From the discussion in the previous sections, it is easy
to see that PLMaude modules satisfy conditions SC1 and SC2.

SRC. We require that there is an associative and commutative operation on states merge : S→
S such that rewriting is preserved by merging. Specifically, if s0

(r ,C ,σ)−−−−→ s′0, s1 = merge(s0, s′)

and s′1 = merge(s0, s′) then s1
(r ,C ′,σ′)−−−−−→ s′1 for some C ′, σ′, such that σ/B = σ′/B and

cloc(C ) = cloc(C ′) where σ/B is the restriction of σ to basic variables. Using associativity
and commutativity we extend the merge operation to sets: merge(s, S) is the result of merging
elements of S into s in some order.
Rewriting Example continued II. Continuing the example we have

• merge(S0, S1) = EGF {CM | EGFR{Mek1 [Mek1 - act] [Mekk3 - act]}}

RC1. We require that the variables appearing in rule terms either have basic sorts, or ‘mixture’
sorts (for example finite sets). This allows us to convert a rule application instance (r ,C , σ)
into a pair of occurrence sets that represent the actual change described by the rule. The mixture
variables stand for the remaining basic terms and substructure at each location of interest that
are not changed by the rule. Furthermore, we assume that the variables occurring in the rule
condition have basic sorts.

Definition: Collection. Now we define a (partial) function that iteratively merges the reach-
able states into one state ŝ in which each location contains all basic elements that could appear
at that location in a reachable state. Given s ∈ S define ŝ by

ŝ = sk if sk = sk+1 where s0 = s and si+1 = merge(si, {s′ (∃ρ)(si
ρ−→ s′})

RC2. The final condition for R to be occurrence-based (relative to a choice of initial states) is
that for any initial state s collection terminates, i.e. there is some k such that sk = sk+1.
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3.3 Mapping occurrence-based rewrite theories to Petri nets
To define the mapping we need some Petri net notation. A transition τ over an occurrence set
O is a pair (Oi,Oo) ∈ Pω[O]×Pω[O] (for simplicity we omit the transition labels). We define
the pre- and post-occurrences of a transition as follows:

pre((Oi,Oo)) = Oi post((Oi,Oo)) = Oo.

The input and output occurrences are the pre- and post-occurrences with the shared occurrences
removed.

in((Oi,Oo)) = Oi −Oo out((Oi,Oo)) = Oo −Oi.

Note that

in((Oi,Oo)) ∩ out((Oi,Oo)) = ∅
(pre((Oi,Oo))− in((Oi,Oo)))

= (post((Oi,Oo))− out((Oi,Oo))) = (pre((Oi,Oo)) ∩ post((Oi,Oo)))

A Petri net model over occurrences O is a pair (T , I ) where T is a set of transitions and
I ∈ Pω[O] is the initial state/marking. A computation over T is a sequence

T $ O0
τ1−→ O1 . . .

τk−→ Ok

such that pre(τi+1) ⊆ Oi and Oi+1 = (Oi − in(τi+1)) ∪ out(τi+1).
Definition: Rule2Transition. We extend the occurrence mapping to map rule instances to
transitions.

s2o(((t0, t1, c),C , σ)) = (s2o((t0,C , σ)), s2o((t1,C , σ)))

where
s2o((t0,C , σ)) = s2o((σ/B)(t0), cloc(C ))†.

Where the † means to drop variable occurrences <V, l> for mixture variables V . Note that if
(r ,C , σ) and (r ,C ′, σ′) are as in RC2 then s2o((r ,C , σ)) = s2o((r ,C ′, σ′)). (See below for
examples of s2o(_) applied to rules.)

Definition: OccB2Petri. Assume R is occurrence-based, with state sort S, and s is an initial
state. The Petri net model, P(R, s), associated with R and s, has occurrences s2o(ŝ) (the
result of collection), initial state s2o(s), and a transition for each rule instance that applies to
ŝ.

P(R, s) = (Ts, s2o(s)) where Ts = {s2o((r ,C , σ)) (∃s′)(ŝ (r ,C ,σ)−−−−→ s′)}
Theorem: Occ2Petri. For R an occurrence-based rewrite theory and s an initial state, the
mapping to Petri nets preserves computations. Specifically, if (Ts, s2o(s)) = P(R, s), then

R $ s = s0
ρ1−→ s1 . . .

ρk−→ sk ⇔ Ts $ s2o(s0)
s2o(ρ1)−−−−→ s2o(s1) . . .

s2o(ρk)−−−−→ s2o(sk).

Proof Sketch. By induction on the computation length k. If si
ρi+1−−→ si+1 then s2o(ρi+1) ∈ Ts

by RC2. Let ρi+1 = (r ,C , σ) with r = (t0, t1, c) and l = cloc(C ). Then si = C [σ(t0)],
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si+1 = C [σ(t1)], and for some occurrence set O s2o(si) = s2o(σ(t0), l) ∪ O and s2o(si+1) =

s2o(σ(t1), l) ∪ O. Thus s2o(si)
s2o(ρi+1)−−−−−→ s2o(si+1). Conversely, let Oi

τi+1−−→ Oi+1, and by
induction Oi = s2o(si) for some reachable si. Also τ = (O0,O1) = s2o((r ,C , σ)) where
(r ,C , σ) applies to ŝ. We can find O′ such that Oi = O′ ∪ O0 and Oi+1 = O′ ∪ O1. By SC3

we can find C ′, σ′ such that si = C ′[σ′(t0)], and si
(r ,C ′,σ′)−−−−−→ si+1 where s2o(si+1) = Oi+1.

Counterexample. To see that requirement (RC2) that merging preserves rewrites is needed,
consider the following rule variants in the Pathway Logic language:

[r1]: {CM | Ras {cyto Rac}} => {CM | Ras [Rac - act]{cyto}}
[r2]: {CM | cm Ras {cyto Rac}} => {CM | cm Ras [Rac - act]{cyto}}

where cyto and cm are variables standing for any other components located in the cytoplasm
or cell membrane respectively. Consider the state {CM | Ras Grb2 {Src Rac}} which can
be obtained from {CM | Ras {Src Rac}} by a merge. The rule r2 applies but r1 does
not, although r1 applies to the ‘before merge’ state. Both rules transform to the same Petri net
transition:

< Ras,CM > < Rac,Cyto > => < Ras,CM > < [Rac - act],CM >

which indeed applies to the corresponding occurrence state

< Ras,cm > < Grb2,cm >< Rac,cyto > < Src,cyto >

Definition: Petri2RWL. The conversion of an occurrence Petri net to a rewrite theory is
simple. If (Ts, s2o(s)) = P(R, s), then PS(R, s) is the rewrite theory with the equational part
of R extended with the definition of occurrences, and rules

{Oi ⇒ Oo (Oi,Oo) ∈ Ts}

Theorem:Petri2RWL. The mapping PS preserves computations.

PS(R, s) $ s2o(s)
τ1−→ . . .

τk−→ Ok ⇔ Ts $ s2o(s)
τ1−→ . . .

τk−→ Ok

4 Relating and transforming queries

4.1 Preservation of properties
The temporal logic used by the Maude model checker, LTL, is based on atomic propositions
that can be defined by boolean functions in Maude. In the case of an occurrence-based rewrite
theory, we restrict attention to to propositions that are positive (goals) and negative (avoids) oc-
currence tests – basic component b occurs (or does not occur) at location l. These propositions
translate to simple membership tests <b, l> ∈ s2o(s) in the corresponding Petri net model.
For example, the property racAct3 presented in section 2 contains one positive occurrence
test (for the presence of < [Rac1 - GTP], cm >) and and one negative occurrence test (for
the absence of < [EGFR - act], cm >).
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Let LTLO be the Maude LTL language with propositional part restricted to occurrence
propositions. Let ψ be an LTLO formula expressed in the PLMaude language and let s2o(ψ)
be the same property expressed in terms of occurrence membership, lifting s2o(_) homomor-
phically (on syntax) to LTLO formulas.

Theorem: LTLO. Given an occurrence-based rewrite theory R and initial state s, let π be
a computation of R, s, π′ be the corresponding computation of P(R, s), and π′′ be the corre-
sponding computation of PS(R, s). Then for any LTLO formula ψ

π |= ψ ⇔ π′ |= s2o(ψ) ⇔ π′′ |= s2o(ψ)

and thus

(R, s) |= ψ ⇔ (Ts, s2o(s)) |= s2o(ψ) ⇔ (PS(R, s), s) |= s2o(ψ)

This is a consequence of the isomorphism of computations and the preservation of satisfaction
of occurrence properties by the occurrence translations.

Note that the LTLO theorem implies that counterexamples are also preserved. This is
important, since queries asking for computations having certain properties are answered by
asking a model-checker to find a counterexample to the assertion that no such computation
exists.

4.2 Relevant Subnets for Goals-Avoids Queries
As indicated in section 2, we are especially interested in answering queries of the form “given
initial state I , find a path that satisfies (G, A)” where (G, A) is a basic goals-avoids property
with goals G and avoids A. We interpret this as meaning find a path (that is, a computation)
starting with the initial state I , that reaches a state satisfying goals G, and such that no state in
the path contains any occurrence of A. Without loss, we further require the path to be minimal.
That is, if any transition is removed, the remaining transitions do not generate a path satisfying
the goals.

The task of finding a minimal path satisfying a goals-avoids property can be simplified by
considering only the set of transitions of a Petri net model that could possibly appear in any
minimal path satisfying that property. We call these the truly relevant transitions. Finding
just the truly relevant transitions means finding exactly the minimal paths satisfying a given
property, the problem we are trying to simplify. Thus we will look for a safe approximation,
that is a superset of truly relevant transitions set. Clearly, transitions that mention an occurrence
to be avoided can be eliminated, as can transitions that do not contribute to reaching some
goal, or transitions whose pre-set will not be a subset of a reachable state. In the following we
define three transformations that formalize these intuitions. The first transformation removes
transitions that mention an occurrence to be avoided. The second transformation is a backwards
collection of transitions that contribute to reaching a goal, either because the post-occurrences
contain a goal, or recursively contain a pre-occurrence of some contributing transition. The
third transformation is a forward collection of transitions applicable to reachable states. We
show that any minimal path meeting a goals-avoids property using transitions in T , in fact uses
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only transitions collected, after removing avoids, by the backward followed by the forward
transformations.

Definition: Minimal Paths. Let I (initial state), G (goals), A (avoids) be occurrence sets
such that (I ∪ G) ∩ A = ∅. The set P(T , I ,G ,A) is the set of Petri net computations, π, that
start from the initial state I , and reach a state containing all occurrences in G , using transitions
in T without ever marking A.

π = O0
τ1−→ . . .

τk−→ Ok ∈ P(T , I ,G ,A) ⇔ O0 = I ∧ G ⊆ Ok ∧
∧

0≤i≤k

Oi ∩ A = ∅

π is minimal if there is no computation π′ that uses a proper subset of the transitions used in π,
and we let mP(T , I ,G ,A) be the set of transitions of P(T , I ,G ,A) that are minimal.

Lemma: Path Monotonicity. The set of minimal paths monotonically increases with increas-
ing initial state and decreasing goals and avoids. Specifically, if T ⊆ T ′, I ⊆ I ′, G ′ ⊆ G ,
A′ ⊆ A, then

P(T , I ,G ,A) ⊆ P(T ′, I ′,G ′,A′)

and
mP(T , I ,G ,A) ⊆ mP(T ′, I ′,G ′,A′)

Definition: Removing Avoids. Assume given T and A as above. The result of removing rules
that mention an element of A is defined by

T/A = {τ ∈ T (pre(τ) ∪ post(τ)) ∩ A = ∅}

Lemma: Removing Avoids is Safe. If π ∈ mP(T , I ,G ,A), then π ∈ mP(T/A, I ,G ,A).
Proof. Since by definition no transition in T − T/A could be used in π.

Definition: Backward collection. Assume given T , G as above. The backward collection
T b

G of T relative to G is defined by

T b
G =

⋃

j∈Nat

T b
j where

G0 = G Gj+1 = Gj ∪
⋃

τ∈T b
j

pre(τ))

T b
j = {τ ∈ T out(τ) ∩Gj /= ∅}

Note that for some n, Gj = Gj+1 for j > n since T is finite and thus only finitely many
increments can be made.

Lemma: Backward Monotonicity. Backwards collection is monotonic in transitions and
goals. That is, if T ⊆ T ′ and G ⊆ G ′, then T b

G ⊆ (T ′)b
G′ .

The lemma Backwards 1 captures the essence of the reason that a transition that appears
in some minimal path for a set of goals is one produced by backwards collection.
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Lemma: Backwards 1. If O
τ1−→ O1

τ2−→ O2 and pre(τ2) ∩ out(τ1) = ∅ then we can find
O ′

2 such that O
τ2−→ O ′

2. Furthermore, for any occurrence set G∗, if out(τ1) ∩ G∗ = ∅, then
G∗ ∩O2 ⊆ G∗ ∩O ′

2.
Proof. With the assumptions of the lemma, pre(τ2) ⊆ O , letting O ′

2 = (O− in(τ2))∪out(τ2)
we have, by definition of transition, the desired transition. Also by definition of transition,
O2 = ((O − in(τ1) ∪ out(τ1)) − in(τ2)) ∪ out(τ2). Assuming out(τ1) ∩ G∗ = ∅ we have
G∗ ∩O2 = G∗ ∩ ((O − in(τ1)− in(τ2)) ∪ out(τ2)) ⊆ G∗ ∩O ′

2.
The lemma Backwards 2 identifies conditions under which a sequence of transitions can

be restarted at a new state. For backwards collection, the state of interest is one resulting from
deleting an irrelevant transition, such as τ1 in Backwards 1.

Lemma: Backwards 2. If O ∩G ⊆ O ′ ∩G , pre(τ) ⊆ G and O
τ−→ O1, then we can find O ′

1

such that O1 ∩G ⊆ O ′
1 ∩G and O ′ τ−→ O ′

1.
Proof. By the assumptions, pre(τ) ⊆ O ′, so letting O ′

1 = (O ′ − in(τ)) ∪ out(τ) we have
the desired transition. Since O1 = (O − in(τ)) ∪ out(τ), if g ∈ O1 either g ∈ out(τ) or
g ∈ O − in(τ) ⊆ O ′ − in(τ). Thus g ∈ O ′

1.

Theorem: Backward safety. If π ∈ mP(T , I ,G ,A), then π ∈ mP(T b
G , I ,G ,A).

Proof Sketch. Let π = I
τ1−→ O1 . . .

τk−→ Ok ∈ mP(T , I ,G ,A). We show that τj ∈ T b
G for

1 ≤ j ≤ k. Suppose not. Let G∗ be the union of the Gjs in the definition of T b
G , and let j be the

largest number such that τj /∈ T b
G . Thus out(τj) ∩ G∗ = ∅. We construct π′ ∈ P(T , I ,G ,A)

using fewer transitions, contradicting minimality of π. If j = k then G ⊆ Ok−1 and π′ is the
first k−1 transitions of π. If j < k then let O ′

j = Oj−1, and O ′
i+1 = (O ′

i−in(τi+1))∪out(τi+1)
for j ≤ i < k. By maximality of j, τi+1 ∈ T b

G and thus pre(τi+1) ⊆ G∗ for j ≤ i < k. We
claim that Oi+1 ∩ G∗ ⊆ O ′

i+1 ∩ G∗ and O ′
i

τi+1−−→ O ′
i+1 for j ≤ i < k. For i = j this

follows by backwards lemma 1 and for i > j it follows by backwards lemma 2. Thus taking
π′ = I

τ1−→ O1 . . .
τj−1−−→ O ′

j

τj+1−−→ . . .
τk−→ O ′

k we are done.

Definition: Forward collection. The forward collection T f
I of T relative to I is defined by

T f
I =

⋃

j∈Nat

T f
j I f =

⋃

j∈Nat

Ij where

I0 = I Ij+1 =
⋃

τ∈Tf
j

post(τ)

T f
j = {τ ∈ T pre(τ) ⊆ Ij}

Again, we have that for some n, Ij = In for j ≥ n.

Lemma: Forward Monotonicity. If T ⊆ T ′ and I ⊆ I ′, then T f
I ⊆ (T ′)f

I ′

Theorem: Forward safety. If π ∈ mP(T , I ,G ,A), then π ∈ mP(T f
I , I ,G ,A).

Proof. This is because for each transition τj+1 in π, using the notation of the definition,
pre(τj+1) ⊆ Ij , and thus τj+1 ∈ T f

j for 0 ≤ j < k.
Corollary: Relevant Subnet. If π ∈ mP(T , I ,G ,A) is non-empty, then

π ∈ mP(((T/A)b
G)f

I ,A, I ,G ,A)
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Thus search for such paths can be carried out in the relevant subnet (T b
G,A)f

I ,A. Note that if
G /⊆ I f then P(T , I ,G ,A) is empty.

5 Summary and Future Work
As context we presented an overview of the capabilities that the Pathway Logic Assistant pro-
vides for computing with Pathway Logic models and for using different representations of
networks and computations for analysis and interactive visualization. The main contributions
of the paper are: a definition of mappings between rewriting logic and petri net representa-
tions of biological processes (and similar concurrent processes); proof that these mappings
preserve properties of interest; and definition of a relevant subnet transformation that reduces
the number of transitions that must be considered in search for a path satisfying a goals-avoids
property.

As models grow in size, we expect to need to explore alternative path finding algorithms.
Possibilities include employing more highly tuned model checkers, discovering new simplifi-
cation and abstraction transformations, and developing constraint solving approaches. Another
big challenge is refining PLMaude models to incorporate semi-quantitative information about
expression levels and relative preference for competing reactions, and to be able compute with
and visualize the refined models in ways that are meaningful to working biologists.
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GM68146.
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