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ABSTRACT

Pathway Logic is a step towards a vision of symbolic sys-
tems biology. It is an approach to modeling cellular pro-
cesses based on formal methods. In particular, formal ex-
ecutable models of processes such as signal transduction,
metabolic pathways, and immune system cell-cell signal-
ing are developed using the rewriting logic language Maude
and a variety of formal tools are used to query these mod-
els. An important objective of Pathway logic is to reflect
the ways that biologists think about problems using infor-
mal models, and to provide bench biologists with tools for
computing with and analyzing these models that are natural.
In this paper we describe the Pathway Logic approach to the
modeling and analysis of signal transduction, and the use of
the Pathway Logic Assistant tool to browse and query these
models. The Rac1 signaling pathway is used to illustrate the
concepts.

1 SYMBOLIC SYSTEMS BIOLOGY

Biological processes are complex. They exhibit dynam-
ics that with a huge range of timescales—microseconds to
years. The spatial scales cover 12 orders of magnitude—
metabolite to single protein to cell to organ to whole organ-
ism. Oceans of experimental biological data are being gen-
erated. How can we use this data to develop better models?
Important intuitions are captured in mental models that bi-
ologists build of biological processes and the cartoons they
draw. The trouble is that these models are not amenable to
computational analysis.

Symbolic systems biology is the qualitative and quanti-
tative study of biological processes as integrated systems
rather than as isolated parts. Our initial goal for sym-
bolic systems biology include: modeling causal networks of
biomolecular interactions in a logical framework at multiple
scales; developing formal models that are as close as pos-
sible to domain experts (biologists) mental models; being
able to compute with and analyze these complex networks.
The latter includes techniques for abstracting and refining

the logical models; using simulation and deduction to com-
pute or check postulated properties; and make testable pre-
dictions about possible outcomes, using experimental results
to update the models.

There are many challenges in developing symbolic sys-
tems models. One challenge is choosing the right abstrac-
tions. Biological networks (metabolic, protein, or regula-
tory, for example) are large and diverse. It is important
to balance computational complexity against model fidelity
and to be able to move between models of different levels of
detail, using different formalisms in meaningful ways. Bi-
ological networks combine to produce high levels of phys-
iological organization, for example, circadian clock subnet-
works are integrated with metabolic, survival, and growth
subnetworks. A second challenge is to be able to compose
different views or models of different components into inte-
grated system models.

Pathway Logic [8, 9, 38] is one piece of a symbolic sys-
tems approach to modeling biological processes. It is an ap-
proach to the modeling and analysis of molecular and cellu-
lar processes based on rewriting logic. Pathway Logic (PL)
models reflect the ways that biologists think about prob-
lems using informal models. They are curated from the
literature, and written and analyzed using Maude (http:
//maude.cs.uiuc.edu), a rewriting-logic-based for-
malism. A Pathway Logic knowledge base includes data
types representing cellular components such as proteins,
small molecules, complexes, compartments/locations pro-
tein state, and post-translational modifications. Modifica-
tions can be abstract, just specifying being activated, bound,
or phosphorylated, or more specific, for example, phospho-
rylation at a particular site. Collections of entities, treated
as ‘liquid’ mixtures, are represented as multisets (unordered
collections). Rewrite rules describe the behavior of proteins
and other components depending on modification state and
biological context. Each rule represents a step in a biological
process such as metabolism or intra/inter- cellular signaling.
A specific model is assembled by specifying an initial state
(called a dish): the cells, their components, and entities such
as ligands in the supernatant.
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The Pathway Logic Assistant [39] provides an interac-
tive visual representation of PL models. Using the Pathway
Logic Assistant one can

• display the network of signaling reactions for a speci-
fied model;

• formulate and submit queries to find pathways, for ex-
ample activating one protein without activating a sec-
ond protein, or exhibiting a phenotype signature such
as apoptosis;

• compare two pathways;

• find single or double knockouts—individual or pairs of
proteins whose omission prevents reaching a specified
state;

• compute and display subnets for which given proteins
are critical; and

• map gene expression data onto signaling networks

The remainder of the paper is organized as follows. §2
provides a brief overview of other work in formally based
symbolic approaches to modeling cellular processes. An in-
troduction to rewriting logic and Maude is given in §3. The
basic ideas of Pathway Logic are presented in §4, and illus-
trated with fragments from a model of Rac1 activation. Use
of the Pathway Logic Assistant tool to browse and query
models is discussed in §5. The paper concludes with a dis-
cussion of future directions in §6.

2 SYMBOLIC MODELING OF CELLULAR PRO-
CESSES

Symbolic/logical models allow one to represent partial in-
formation and to model and analyze systems at multiple lev-
els of detail, depending on information available and ques-
tions to be studied. Such models are based on formalisms
that provide language for representing system states and
mechanisms of change such as reactions, and tools for anal-
ysis based on computational rules or logical inference. Sym-
bolic models can be used for simulation of system behavior.
In addition properties of processes can be stated in associ-
ated logical languages and checked using tools for formal
analysis.

A variety of formalisms have been used to develop sym-
bolic models of biological systems, including Petri nets [28,
12, 27], the pi-calculus [24, 33], stochastic variants [29];
stochastic logics and associated model checkers [3]; mem-
brane calculi [32, 25]; statecharts [13, 7], life sequence
charts [18]; and rule-based systems including P-systems
[30]; BioCham [10, 5]; and Pathway Logic [8, 9, 38]. Each
of these formalisms was initially developed to model and
analyze computer systems with multiple processes execut-
ing concurrently.

There are many variants of the Petri net formalism and a
variety of languages and tools for specification and analysis
of systems using Petri nets. Petri nets have a graphical rep-
resentation that corresponds naturally to conventional repre-
sentations of biochemical networks. They have been used
to model metabolic pathways and simple genetic networks
(e.g., see [16, 31, 12, 21, 22, 26, 11, 27]). These studies
have been largely concerned with dynamic or kinetic models
of biochemistry. In [40] a more abstract and qualitative view
is taken, mapping biochemical concepts such as stoichiom-
etry, flux modes, and conservation relations to well-known
Petri net theory concepts.

A pi-calculus model for the receptor tyrosine
kinase/mitogen-activated protein kinase (RTK/-MAPK)
signal transduction pathway is presented in [33]. BioSPI,
a tool implementing a stochastic variant of the pi-calculus,
has been used to simulate both the time and probability of
biochemical reactions [29].

In [3] a continuous stochastic logic and the probabilis-
tic symbolic model checker, PRISM, is used to express and
check a variety of temporal queries for both transient behav-
iors and steady state behaviors. Proteins modeled as syn-
chronous concurrent processes, and concentrations are mod-
eled by discrete, abstract quantities.

BioAmbients [32], an adaptation of the Ambients formal-
ism for mobile computations has been developed to model
dynamics of biological compartments. BioAmbient type
models can be simulated using an extension of the BioSPI
tool. A technique for analysis of control and information
flow in programs has been applied to analysis of BioAmbi-
ent models [25]. This can be used, for example, to show that
according to the model a given protein could never appear in
a given compartment, or a given complex could never form.

Statecharts naturally express compartmentalization and
hierarchical processes as well as flow of control among sub-
processes. They have been used to model T-cell activa-
tion [17, 7]. Although Statecharts is a mature technology
with a number of associated analysis and verification tools,
it does not appear that these have been applied to the T-
cell model. Life Sequence Charts [6] are an extension of
the Message Sequence Charts modeling notation for sys-
tem design. This approach has been used to model the pro-
cess of cell fate acquisition during C.elegans vulval devel-
opment [18].

P-systems is a multiset rewriting formalism that pro-
vides a built in notion of location. A continuous variant
of P-systems is used in [30] to model intra-cellular signal-
ing. Locations are used to represent compartmental struc-
ture of a cell. Abstract objects represent proteins and small
molecules, with different objects used to represent differ-
ent modifications / states of the same protein. The under-
lying relation between a protein and its modifications is not
made explicit. A system state specifies the quantity of each
object in each location. A rate function associates to each
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rule a function from system states to real numbers, repre-
senting the rate of the reaction in that state. This determines
how a system state evolves over time. Such models can be
used to predict concentration of objects, for example phos-
phorylated Erk, over time by a discrete step approximation
method.

A simple formalism for representing interaction networks
using an algebraic rule-based approach very similar to the
Pathway Logic approach is presented in [10, 5]. The lan-
guage has three interpretations: a qualitative binary interpre-
tation much like the Pathway Logic models; a quantitative
interpretation in which concentrations and reaction rates are
used; and a stochastic interpretation. Queries are expressed
in a formal logic called Computation Tree Logic (CTL) and
its extensions to model time and quantities. CTL queries can
express reachability (find pathways having desired proper-
ties), stability, and periodicity. Techniques for learning new
rules to achieve a desired system specification are described
in [4].

BioSigNet (BSN) [2] is a knowledge-based system for
representing and reasoning about signaling networks. A
BSN knowledge base encodes knowledge about a signal net-
work, including logical statements based on symbols termed
fluents and actions. Fluents represent the various properties
of the cell and its components while actions denote biolog-
ical processes (e.g. biochemical reactions, protein interac-
tions) or external interventions. The logical statements de-
scribe the impact of these actions on the fluents, how ac-
tions can be triggered or inhibited inside the cell. A BSN
knowledge base is queried using a temporal logic language
over propositions expressing presence or absence of particu-
lar fluents. Three classes of queries are identified: prediction
(can a state be reached); explanation (find initial conditions
that lead to a specified condition); and planning (determin-
ing when an action should occur in order to achieve a desired
result). In [36] BSN is used to model the Erk signaling net-
work.

3 REWRITING LOGIC AND MAUDE

Rewriting logic [23] is a logical formalism that is based on
two simple ideas: states of a system are represented as ele-
ments of an algebraic data type; and the behavior of a sys-
tem is given by local transitions between states described by
rewrite rules. A rewrite rule has the form t ⇒ t′ if c where
t and t′ are patterns (terms possibily containing place holder
variables) and c is a condition (a boolean term). Such a rule
applies to a system in state s if t can be matched to a part of s
by supplying the right values for the place holders, and if the
condition c holds when supplied with those values. In this
case the rule can be applied by replacing the part of s match-
ing t by t′ using the matching values for the place holders
in t′. The process of application of rewrite rules generates
computations (also thought of as deductions). In the case of

biological processes these computations correspond to path-
ways.

Maude is a language and tool based on rewriting logic
http://maude.cs.uiuc.edu. Maude provides a
high performance rewriting engine featuring matching mod-
ulo associativity, commutativity, and identity axioms; and
search and model-checking capabilities. Thus, given a spec-
ification S of a concurrent systems, one can execute S to
find one possible behavior; use search to see if a state meet-
ing a given condition can be reached; or model-check S to
see if a temporal property is satisfied, and if not to see a
computation that is a counter example.

To introduce Maude notation and give some intuition
about how concurrent systems are specified in Maude
we consder a specification of a simple Vending Ma-
chine. The specification is given in a module named
VENDING-MACHINE.

mod VENDING-MACHINE is
sorts Coin Item Marking .
subsorts Coin Item < Marking .
op null : -> Marking . *** empty marking
op _ _ : Marking Marking -> Marking

[assoc comm id: null] .
ops $ q : -> Coin .
ops a c : -> Item .
rl[buy-c]: $ => c .
rl[buy-a]: $ => a q .
rl[change]: q q q q => $ .

endm

First several sorts (think sets or data types) are declared. The
basic sorts are Coin and Item. They represent what you
put in and get out of the machine. The sort Marking con-
sists of multisets of items and coins. This is specified by
the subsort (subset) declarations saying that coins and items
are (singleton) markings; and the declaration of the union
operator (__). The blanks indicate operator argument posi-
tions, and union of two markings is represented by placing
them side by side, just as one represents a string of char-
acters. The operator attributes assoc, comm, and id:null

declare it to be associative and commutative with identity
null, the empty marking. After defining the data types to
be used, some specific constants are declared: $ (dollar) and
q (quarter) of sort Coin; and a (apple) and c (cake) of sort
Item (the keyword ops is used to when declaring multiple
constants of the same sort). Finally there are three rewrite
rules specifying the vending machine behavior. The rule la-
beled buy-c says that if you have a dollar you can by a cake.
More formally, any marking containing an occurrence of $
can be rewritten to one in which the $ is replaced by a c.
Similarly the rule labeled buy-a says that with a dollar you
can also get an apple and a quarter change. The rule labeled
change says that when four quarters have accumulated they
can be changed into a dollar. Note that if a dollar is present
in a marking, there are two ways that the marking could be
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rewritten, each with a different outcome. If four quarters are
also present, the change rule could be applied before or after
one of the buy rules without affecting the eventual outcome.
To find one way to use three dollars, ask Maude to rewrite,
and a quarter, an apple, and two cakes are the result.

Maude> rew $ $ $ .
result Marking: q a c c

Although there are several ways to rewrite three dollars,
the Maude rewrite command uses a specific strategy for
choosing rules to apply, and in this case chose to apply
buy-c twice and buy-a once.

To discover more possibilites Maude can be asked to
search for all ways of rewriting three dollars, such that the
final state matches some pattern. For example, we can find
all ways of getting at least two apples using the pattern

a a M:Marking

that is matched by any state that has at least two as.

Maude> search $ $ $ =>! a a M:Marking .
Solution 1 (state 8)
M:Marking --> q q c
Solution 2 (state 9)
M:Marking --> q q q a

There are two ways this can be done. In one solution the
remainder of the state consists of a cake and two quarters,
(indicated by M:Marking -> q q c in Solution 1). In the
other solution, there is a third apple and three quarters.

We can ask Maude to show us a path (list of rules fired)
corresponding to one of these solutions using the function
findPath and the property nApples(2) which holds just
if the state matches the pattern a a M:Marking.

Maude> red findPath(vm($ $ $),nApples(2)) .
result SimplePath:

spath(’buy-c ’buy-a ’buy-a, vm(q q a a c))

The function findPath calls the Maude model-checker
with the assertion that starting in a state with three dollars
there is no way to apply to rules to reach a state with two
apples. The model-checker looks at all possible sequences
of rewrites (paths) and for each one checks the given asser-
tion. If it finds a path for which the assertion fails it returns
that path as a counter example to the given assertion. In the
example above the path found applies buy-c then applies
buy-a twice. If no counterexample is found, the model-
checker returns the boolean true.

4 PATHWAY LOGIC BASICS

Pathway Logic models are structured in four layers: (1) sorts
and operations, (2) components, (3) rules, and (4) queries.
The sorts and operations layer declares the main sorts and

subsort relations, the logical analog to ontology. The sorts
of entities include Chemical, Protein, Complex, and Loca-
tion (cellular compartments), and Cell. These are all sub-
sorts of the sort, Soup, that represents ‘liquid’ mixtures, as
multisets (unordered collections) of entities. The sort Mod-
ification is used to represent post-translational protein mod-
ifications. They can be abstract, to specify that a protein
is activated, bound, or phosphorylated, or more specific,
for example, phosphorylation at a particular site. Modifica-
tions are applied using the operator [ - ]. For example the
term [EgfR - act] represents the epidermal growth fac-
tor (Egf) receptor in an activated state and [Rac1 - GTP]

represents Rac1 in its “on” state (loaded with GTP).
A cell state is represented by a term of the form

[cellType | locs]

where cellType specifies the type of cell, for example
Macrophage, and locs represents the contents of a cell or-
ganized by cellular location. Each location is represented by
a term of the form { locName | components } where
locName identifies the location, for example CLm for cell
membrane, and components stands for the mixture of pro-
teins and other compounds in that location.

The components layer specifies particular entities (pro-
teins, genes, chemicals) and introduces additional sorts for
grouping proteins in families. For example ErbB1L is a sub-
sort of Protein. This is the sort of ErbB1 ligands whose ele-
ments include the epidermal growth factor Egf. The rules
layer contains rewrite rules specifying individual reaction
steps. In the case of signal transduction rules represent pro-
cesses such as activation, phosphorylation, complex forma-
tion, or translocation. The sorts and operations, components,
and rules layers make up a Pathway Logic knowledge base.
The queries layer specifies initial states, relative to which
queries can be answered. Initial states are in silico Petri
dishes containing a cell, with its components, and ligands
of interest in the supernatant.

Below we give a brief overview of the representation in
Maude of signal transduction processes, illustrated using a
model of Rac1 activation. This model and several others
are available as part of the Pathway Logic Demo available
from the Pathway Logic web site http://pl.csl.sri.
com/ along with papers, tutorial material and download of
the Pathway Logic Assistant tool.

4.1 Modeling Activation of Rac1 in Pathway Logic

Rac1 is a small signaling protein of the Ras superfamily. It
functions as a protein switch that is “on” when it binds the
nucleotide triphosphate GTP, and “off” when it binds the
hydrolysis product GDP. The Pathway Logic model of Rac1
activation was curated using [34] and many other references
(cited as metadata associated with individual rules). In the
following we show an initial state for study of Rac1 acti-
vation and two example rules, and briefly sketch some of
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Figure 1: Rac1 activation model as a Petri net. Ovals are occurrences, with initial occurrences darker. Rectangles are
transitions. Two way dashed arrows indicate an occurrence that is both input and output. The full net is shown in the upper
right thumbnail. A magnified view of the portion in the red rectangle is shown in the main view.

the ways one can compute with the model. The initial state
(called rac1demo) is a dish PD( ... ) with a single cell
and two stimuli in the supernatant, Egf and FN, represented
by the following term.

rac1demo = PD(Egf FN [Fibroblast |
{CLo | empty}
{CLm | EgfR Ia5Ib1 PIP2}
{CLi | [Hras - GDP] [Rac1 - GDP]

[Cdc42 - GDP] Src}
{CLc | [Actin - poly] [Ksr1 - phos]

1433x1 1433x2 C3g Cas Cbl Crk
Dock Abi1 Elmo Eps8 Erk Fak
Gab1 Grb2 Mek Pak Pax Pdk1 Pi3k
PP2a Raf1 Rsk Shp2 Sos1 Vav2 }]) .

In this example the cell type is Fibroblast and the dish
contains the ligands FN and Egf in the supernatant. The
outside of the cell membrane (tag CLo) is empty. The cell
membrane (tag CLm) has an Egf receptor (EgfR) an integrin,
Ia5Ib1, that binds to FN, and the chemical PIP2. The inside
of the cell membrane (tag CLi) contains Hras and Cdc42

loaded with GDP ([Hras - GDP],[Cdc42 - GDP]), Rac1
in its “off” state ( loaded with GDP, [Rac1 - GDP]), and
Src. The cell cytoplasm (location tag CLc) contains addi-
tional proteins used in one or more of the activating path-
ways.

One way to activate Rac1 begins with the activation of
the Egf receptor due to the presence of the Egf ligand. The
following rule represents this signaling step.

rl[1.EgfR.on]:
?ErbB1L:ErbB1L
[CellType:CellType | ct
{CLo | clo}
{CLm | clm EgfR} ]
=>
[CellType:CellType | ct
{CLo | clo [?ErbB1L:ErbB1L - bound]}
{CLm | clm [EgfR - act]} ] .

The symbol ?ErbB1L:ErbB1L is a variable ranging over
the sort ErbB1L. The symbol ct is a variable standing for
the remaining locations of the cell, and the symbols clo and
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clm are variables standing for the remaining components in
their respective locations. The rule matches the rac1demo

dish by binding the variable ?ErbB1L:ErbB1L to Egf, ct
to the locations tagged CLi and CLc, clo to empty, and
clm to Ia5Ib1 PIP2 Applying the rule replaces EgfR by
[EgfR - act] resulting in the dish

PD(Egf FN [Fibroblast |
{CLo | [Egf - bound]}
{CLm | [EgfR - act] Ia5Ib1 PIP2}
{CLi | [Hras - GDP] [Rac1 - GDP]

[Cdc42 - GDP] Src}
{CLc | [Actin - poly] [Ksr1 - phos]

1433x1 1433x2 C3g Cas Cbl Crk
Dock Abi1 Elmo Eps8 Erk Fak
Gab1 Grb2 Mek Pak Pax Pdk1 Pi3k
PP2a Raf1 Rsk Shp2 Sos1 Vav2 }]) .

The following is one of three rules characterizing conditions
for the Rac1 switch to be turned on.

rl[256.Rac1.on-3]:
{CLi | cli [Cas - act] [Crk - reloc]

[Dock - act] [Elmo - reloc]
[Rac1 - GDP]}

=>
{CLi | cli [Cas - act] [Crk - reloc]

[Dock - act] [Elmo - reloc]
[Rac1 - GTP]} .

This rule describes activation resulting from assembly of
Elmo and Crk2 (modifier reloc), with activated Cas, and
Dock at the cell membrane. Executing the rule replaces
[Rac1 - GDP] by [Rac1 - GTP], turning Rac1 on, and
leaves the remaining components unchanged.

As explained in section 3, Maude provides several ways
to compute with or query a model. One can rewrite an initial
state, such as rac1Demo above, to see a possible final state,
or search for all states satisfying some predicate. The main
form of query used in PL is a goals-avoids query. Goals and
avoids are specified in terms of occurrence properties satis-
fied when a a particular protein occurs in a given modifica-
tion state and location. A pathway satisfies a goals-avoids
property if the final state satisfies each of the goals and no
state along the pathway satisfies any of the avoids. As an
example, to find a path activating Rac1 that is stimulated by
FN alone, we use a query consisting of one goal and one
avoid. The goal is the property that Rac1 loaded with GTP
is present in the location CLi, and the property to be avoided
is that Egf is present on the outside of the cell, thus forcing
the FN stimulus to be selected.

This query could be answered by directly asking Maude,
however the textual representation of cell states and path-
ways quickly becomes difficult to use as the size of a model
grows, and an intuitive graphical representation becomes in-
creasingly important. In addition, it becomes important to
take advantage of the simple structure of PL models when

searching for paths and carrying out other analyses. In the
next section we show how the Pathway Logic Assistant can
be used to visualize a model as a network of reaction rules,
to browse the network, and to specify and execute queries.

5 THE PATHWAY LOGIC ASSISTANT

The Pathway Logic Assistant (PLA) provides an interactive
graphical view of a PL knowledge base. Given a dish, PLA
generates a Petri net model. Petri nets have a natural graph-
ical representation, and additionally, there are very efficient
tools for analyzing the Petri net models generated by PLA.
Our Petri net models are a special case of Place-Transition
Nets given by a set of occurrences (places in Petri net ter-
minology) and a set of transitions [37]. Occurrences can be
thought of as atomic propositions asserting that a protein (in
a given state) or other component occurs in a given compart-
ment. For example Efg outside a cell is represented by the
occurrence <Egf, out> and Egfr activated in the cell mem-
brane is represented by <[EgfR - act], CLm>. A system
state is represented as a set of occurrences (called a marking
in Petri net terminology), giving the propositions that are
true. A transition is a pair of sets of occurrences. A transi-
tion can fire if the state contains the first set of occurrences.
In which case the first set of occurrences is replaced by the
second set. PL goal properties translate to Petri net prop-
erties expressed as occurrences that must be present (places
to be marked) and avoids properties translate to occurrences
that must not appear (places not to be marked) in a computa-
tion. Paths leading from an initial state to a state satisfying a
set of goals can be represented compactly as a Petri net con-
sisting of the transitions fired in the path, thus giving query
results a natural graphical representation. Execution of the
path net starting with the initial state, leads to a state sat-
isfying the goals, and the net representation makes explicit
the dependency relations between transitions: some can fire
concurrently (order doesn’t matter), and some require the
output of other transitions to be enabled.

To generate a Petri net model given a PL knowledge base
and a dish, the first step is to find all rule instances that could
possibly be enabled by repeated rewriting starting from that
dish. (Actually, a super set is computed for efficiency.) Then
each rule instance is converted into a Petri net transition
which consists of the rule label and two sets of occurrences,
one corresponding to the lefthand side of the rule and one
corresponding to the righthand side. In each case the occur-
rences are the location components paired with their location
name. For example the rule labeled [1.EgfR.on] shown in
§4 becomes the transition

pnTrans[1.EgfR.on]:
<Egf, out> <Egfr, CLm>
=>
<Egf - bound, CLo> <[Egfr - act], CLm> .
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There is only one instance of this rule in the model generated
from the rac1Demo dish as there is only one ErbB1L ligand
in the dish.

Figure 2: A pathway activating Rac1 that uses both Egf and
FN stimuli.

Figure 1 shows a screen shot of the Petri net model gen-
erated by PLA from the rac1Demo dish. The thumbnail
sketch in the upper right shows the full network. The main
frame shows a magnified version of the portion of the net-
work in the red rectangle. The view in the main frame can be
changed by dragging the red rectangle around in the thumb-
nail frame. It can also be changed using the scroll bars. The
Finder in the lower right allows one to locate occurrences
and rules by name, and center the view on the selected node.
To make a query, goals and avoids can be specified either by
clicking on the occurrence and selecting goal or avoid in the
selection window that appears, or by using the selection win-
dow directly. Once goals and avoids have been specified the
user can ask to see the relevant subnet or to find a path. The
relevant subnet contains all of rules needed for any (mini-
mal) pathway satisfying the query, while the path is just the
first path found by the analysis tool. Figure 2 shows the path
corresponding to the query in which the goal is activation
of Rac1 (<[Rac1 - GTP], CLi>) and there are no avoids.
This path uses downstream elements stimulated by both the
Egf and the FN ligands.

In addition to generating subnets and pathways, two sub-
nets and/or pathways can be compared. For this, the two
networks are merged into one. The nodes belonging to both
networks are colored gray, while exclusively from the first
network are colored orange and those exclusively from the

second network are colored or green (the choice of color
coding can customized).

Figure 3 shows the result of comparing two other path-
ways found in the rac1Demo model. In the first pathway FN
is avoided and in the second Egf is avoided. We see that
the only common elements are Src and Rac1. PLA can also
be asked to list the knockouts for a given goal (components
which if deleted prevent the goal from being reached). In
the case of Rac1, Src is the only single knockout.

Figure 3: Comparison of two pathways activating Rac1.
One stimulated by Egf only (purple/darker color), and one
stimulated by FN only (blue-green/lighter color). The com-
mon parts (Src and Rac1) are white.

The logic underlying the goals/avoids queries is a tem-
poral logic and in principle is it possible to formulate more
complex queries, for example expressing that a particular
element is a check-point, or that a particular activation state
is always eventually reachable. In [1] a study was carried
out in which Pathway Logic models were exported to the
SAL language [35] and comparison of the effectiveness of
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several model-checkers in answering temporal logic queries
was made. For the large models that we are interested in
querying, bounded model checking was able to find counter-
examples and thus to generate pathways, but the special
purpose Petri net analysis seems to scale much better, and
the goals/avoids queries are easy for the biologists to under-
stand.

6 CONCLUSIONS

We have described the Pathway Logic approach to modeling
and analysis of signal transduction networks. The current
Pathway Logic knowledge base has more that fifteen hun-
dred components and more than nine hundred curated reac-
tion rules. The current state of Pathway Logic is one step
towards the grander vision of symbolic systems biology.

The Pathway Logic Assistant uses several representations
of reaction networks. Petri nets have been used for both vi-
sualization and analysis. Special purpose formal notations
exist for representing molecular interactions and pathways.
for example the notation developed by Kitano for represent-
ing pathways, [15, 14], and the notation developed by Kohn
for representing [19, 20]. The Kitano notation has existing
tool support (Cell Designer) that connects the graphical rep-
resentation to an underlying computational semantics. This
could be used as a graphical interface for curation in Path-
way Logic. An important feature of PLA is the ability to
generate pathways as query results. In this case the ability
to automate the drawing of pathways is crucial. Automatic
drawing of computed pathways using the Kitano or Kohn
notations is a difficult problem, without good solutions cur-
rently.

Pathway Logic does not currently support representing
quantitative information such as reaction rates. The focus
has been on understanding static and dynamic structure of
reaction networks as this is what the underlying formalism
is best suited for. In ongoing projects we are exploring ways
to combine other modeling techniques including stochastic
simulation and information theoretic analyses.

There a several future directions for development. One
is to scale to much bigger models. To make larger mod-
els manageable, it will be necessary to develop algorithms
to collapse flat networks into hierarchical networks where
nodes in the hierarchy correspond to meaningful signaling
modules. In addition, developing property preserving ab-
stractions will be important to be able answer queries against
the more complex networks. Another direction is to ap-
ply the basic approach to different types of systems, such
as metabolic networks, gene-regulation networks, or multi-
cellular systems, and to integrate models of different types
of systems to develop a systems level view.
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