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Abstract  
Background 
Neuroscience is experiencing explosive growth in detailed high-quality experimental 
information on neural processes underlying learning, memory and behavior. There is a need 
for computational models that can manage this outpouring of information, derive knowledge 
from information, and to generate novel, testable hypotheses.  Many current models of neural 
processes utilize a framework of differential equations. These models tend to exhibit high 
sensitivity to system parameters requiring accurate measurements of these parameters. Such 
data are frequently unavailable, leading to difficult solution stability, robustness, and validity 
problems. Further, the models do not scale easily since they rapidly become intractable as the 
number of cells incorporated increases. The situation is analogous to that in the biochemical 
pathway modeling. There, a complementary approach based on a computing formalism called 
Pathway Logic, implemented by the high-level rewriting-logic language Maude.  This 
approach is being successfully used to model and simulate biochemical signaling pathways. 

Results 
We describe an application of Pathway Logic, using the rewriting-logic specification system 
Maude, to model a neural circuit involved in feeding behavior of a marine mollusk. This 
approach has potential advantages of scalability and robustness with regard to system 
parameters, allows us to easily represent properties of neuron as well as different types of 
inter-cellular connections and to reproduce key features of known behavior. Also, the model 
enables easy modification of the properties characterizing a neuron and observation of the 
effects on its behavior, singly and as a part of more complex circuits. The ability to carry out 
such in silico experiments is one of the benefits of this proposed approach.  
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Conclusions 
This approach yields expressive models capable of simulating known neural circuit behaviors 
and performing in silico experiments including knock-outs, ‘what-if’s and others. More 
complete models including representations of additional neuron properties, might be capable 
of providing new understanding of more complex behavior and testable hypotheses regarding 
the effects of modifying circuit elements. 

Background  
The last several years have witnessed exciting and explosive growth in the amount of 
detailed high-quality experimental information on neural processes underlying behavior. 
Concurrently, computational neuroscience has also experienced a surge of interest and 
activity in the formulation of models of increasing complexity. These twin developments 
present opportunities as well as challenges to neuroinformatics. Among current models of 
neural processes, a lot of them utilize a framework of differential equations such as the 
Hodgkin-Huxley (H-H) equations [1], integrate-and-fire methods and artificial neural 
networks [2]. These models and in particular the H-H models, are affected by high sensitivity 
to system parameters, which are frequently unavailable, implying difficult solution stability, 
robustness, and validity problems. In addition, these models do not scale easily, rapidly 
become intractable as the number of cells incorporated increases. The situation is analogous 
to that in the modeling of biochemical pathways. There, a complementary approach based on 
a computing formalism called Pathway Logic (PL) [3-7], implemented by the high-level 
rewriting-logic language Maude [8, 9], is being successfully used to model and simulate 
biochemical signaling pathways. By representing knowledge at an abstract, symbolic level 
this approach has enabled development of models capable of performing sophisticated 
queries about signaling pathways, while not being overly constrained by lack of low-level 
details.  

The aim of the present research is to apply such approaches to neural processes underlying 
behavioral plasticity. By behavioral plasticity we mean the changes in neuronal properties 
that result as a consequence of learning and memory. This methodology is not intended to 
replace the existing techniques based on differential equations, but to complement these by 
representing knowledge at a different level of abstraction. PL models are concerned with, 
among other things, the overall logic of the neuronal signals and the variations in qualitative 
features of neural components across the entire circuit. Further, this abstraction can be easily 
extended to relate the behavior of the circuit and circuit components to visible high-level 
behavior. The models are intended to be qualitative and executable, i.e., starting from a given 
system state, complex concurrent state changes can be deduced based upon existing 
knowledge. This capability enables the model to answer “what if questions”, perform in silico 
neural circuit modification experiments, and symbolically execute theories over time, 
formally analyzing all states reachable from an arbitrary initial state. In this paper, we present 
the first steps in the development of PL models of identified neural circuits, important in 
learning and memory, in the marine mollusk Aplysia. 

Neurons and Neural Circuits 
Neurons are highly specialized eukaryotic biological cells capable of communicating with 
each other by means of electrical (also called gap junctions). and chemical (inhibitory and 
excitatory) signaling. In general, all possess a cell body, called the soma, from which emerge 
several highly branched structures called dendrites as well as a single long process called the 
axon, which ends in several branches, the synaptic terminals. The synaptic terminals of the 
transmitting (presynaptic) neuron communicate chemical signals to the dendrites of nearby 
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receiving (postsynaptic) neurons by releasing specialized molecules, the neurotransmitters, 
released by the presynaptic neuron after a sufficient transmembrane voltage depolarization 
reaches the synaptic terminal. The buildup of membrane depolarization at the synapse occurs 
after a nerve impulse, or action potential, travels down the cell body and the axon in a series 
of depolarizations and repolarizations caused by bidirectional transfer of sodium and 
potassium ions between the cytoplasm of the neuron and the extracellular space. Further 
details can be found in [10]. 

The ability of the nervous system to generate behaviors arises from the organization of 
neurons into networks whose functional capabilities emerge from interactions among the 
intrinsic neuronal biophysical properties, the pattern of the inter-neural synaptic connections 
and the physiological properties of these synaptic connections. By virtue of their relatively 
simple nervous systems, often with large identifiable neurons that are amenable to detailed 
study, invertebrates are frequent candidates for cellular analyses of neural circuits and their 
relationship to behavior [11,12]. One useful animal model system is the marine mollusk 
Aplysia. Several of its behaviors, including feeding [13,14], can be modified by learning and 
many features of the neural circuits that underlie these behaviors are known and several 
neural correlates of learning have been identified.  

Previously, Susswein et al. [15] developed a model that contained two neurons, B31/B32 and 
B63 (Fig. 1) and simulations were performed with the neurosimulator SNNAP (Simulator for 
Neural Networks and Action Potentials) [16].  

 

Figure 1  - Features of the two-cell model 
A: B63 was modeled with separate soma and axon compartments. The B63 axon was 
electrically coupled to B31. In addition, the B63 axon excited B31 via a moderately 
facilitating chemical synapse. B: coupling conductance between B63 and B31. C: response 
properties of B63 soma and axon and of B31, in the absence of connections between them. 

Several configurations of the model were examined. Simulations indicated that a 
configuration in which electrical and fast chemical coupling occurred in combination with a 
plateau-like potential gave rise to a circuit that was robust to changes in parameter values and 
stochastic fluctuations, that closely mimicked empirical observations. 

PL Models of Biochemical Pathways 
The situation described above is analogous to that currently in the fields of biological 
pathways including signal transduction and metabolic pathways. Quantitative models in these 
fields, such as the Michaelis-Menten [17] equations are similarly affected by sensitivity of 
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parameters, hampered by lack of detailed knowledge of these parameters and intractability 
when models become large in the sense of including significant numbers of biomolecular 
reactions. These issues have prompted biologists to collaborate with computer scientists to 
develop new knowledge representation and modeling techniques. In particular, PL, described 
further below, has been successfully applied in the modeling of signal transduction pathways 
[5]. 

From an epistemological point of view, PL represents knowledge at a higher degree of 
abstraction. It is symbolic, i.e., it represents the different entities of interest such as cells, 
proteins, functional domains, cytoskeleton, and others, explicitly as symbols capable of being 
processed by software. A benefit of this representation is that the subsequent models are 
executable, enabling in silico simulations of complex, biologically meaningful experiments, 
such as, knock-outs, in which, for example, the effect of removing a particular biomolecule 
from a signal transduction pathway is investigated. PL is based on a branch of computer 
science called Formal Methods, which derive from the mathematical concept of formal 
systems and logics [18]. Formal methods enable model checking, a method for formally 
verifying hardware and software systems in which the system specifications are expressed as 
formulas in the temporal logic, and efficient symbolic algorithms are used to traverse the 
state space reachable from an initial state of a system model and check whether the 
specification holds or not. Extremely large state-spaces can be examined in a matter of 
minutes. 

A highly desirable feature of any modeling methodology is scalability, which can be 
informally defined as the capability of the technique to include large numbers of the entities 
of interest and yet perform computations within a reasonable amount of time and with 
reasonable accuracy. In this respect, it has long been observed that modeling based on 
ordinary or partial differential equations typically become computationally intractable when 
the number of differential equations to be integrated simultaneously is in the high tens. 
Approximate solutions based on finite element methods are typically invoked to solve such 
equation sets. However, the limitations of such modeling methods become apparent when one 
notes that a single cubic centimeter of the human brain can contain 50 million neurons [10].  
By contrast, qualitative approaches such the PL models can directly handle much larger 
systems. For example, PL networks of several thousand nodes and edges have been generated 
and analyzed in tens of minutes on standard laptop hardware, without substantial effort to 
optimize the processing (see http://pl.csl.sri.com/). The formal nature of the models means 
that abstraction interpretation techniques used to analyze complex software system can be 
applied to make query/analysis of even larger networks feasible. Biological systems have 
been modeled using computational formalisms such as Petri Nets [19], pi-calculus [20], 
Statecharts [21], interaction networks[22]. To the best of our knowledge none of these 
qualitative symbolic methods has been used to model neural signaling circuits so far. 

Results  
Pathway Logic Modeling in Neuroscience 
To illustrate the proposed modeling approach a Maude model of a simplified version of the 
Aplysia B63-B31/32 two neuron system (Fig. 1) studied in [15] was developed. The purpose 
of developing this model was to demonstrate that Maude and PL are capable of representing 
and expressing neuro-physiological objects and the behavior of neural circuits. In this 
approach, each neuron is represented as an interactive object with attributes whose values 
correspond to neuron properties and state. For example the Maude specification  
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[B31 : Neuron | thresh: 4, decay: 5, dplevel: 0, ttl: 0, 
out: false, in: 0 ]  

represents a B31-like neuron with depolarization threshold 4 (all numbers represent relative 
quantities in an abstract unit system) and time for decay from plateau to resting 
depolarization level equal to 5.  The attributes dplevel, ttl, out, and in represent 
the current state of the neuron as the system evolves: dplevel is the depolarization level, 
initially 0; ttl is the remaining decay time in the case that the neuron has switched to a 
plateau state; ‘out’ is a boolean flag indicating whether or not the neuron is transmitting; 
and ‘in’ is the strength of the input signal.  

Neurons communicate with each other via chemical and electrical synaptic connections and 
these are also represented as objects.  For example, the Maude specifications 

 
[SC | from: B63 to: B31] 
[EC | from: B63 to: B31] 

represent chemical and electrical synaptic connections from a neuron named B63 to one 
named B31.  Transmission of signals along these different routes is represented by two 
Maude operators, xmit, and fired.  For example, the latter is specified as 
 
op fired : NeuronId Nat -> Msg.  

Here, NeuronId and Msg are Maude sorts and Nat is a Maude specification of the 
nonnegative integers.  

It is convenient to further refine the specification of signal transmission along an electrical 
connection by specifying an additional Maude operator called transmit.  This is expressed as 
an equation 

eq transmit(nid,j,b, [EC|from: nid, to: nid1 ] 
[nid1 : nc |atts, in: j1] conf) 

= [EC|from: nid, to: nid1 ] transmit(nid,j,b, 
[nid1 : nc | atts, in: (j + j1) ] conf). 

Ignoring details, the semantics of this operation is that the neuron nid adds the integer j into 
the incoming signal of neuron nid1 when the two are connected by means of an electrical 
connection.  Different types of neurons, in terms of their functional roles, are represented by a 
Maude sort specification called NeuronClass.  The Maude op specification then denotes 
particular types of neurons. For example, the construct 
 
op SG: - > NeuronClass . specifies a neuron acting as a signal 
generator.  
 
Using these constructs, the two neuron model in Fig. 1A can be represented symbolically as 
the Maude specification: 
 
op inc : -> NCConf . 
eq inc = B63 B31 [EC | from: B31 to: B63] 

[EC | from: B63 to: B31] [SC | from: B63 to: B31]. 
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In typical Maude syntax, the op statement specifies as a constant of data type NCConf (i.e., 
Neuron configuration). The subsequent equation defines inc to be a configuration consisting 
of a B31 neuron, a B63 neuron (B31 and B63 are similarly defined by equations), an 
electrical connection from B31 to B62, an electrical connection from B63 to B31 and a 
synaptic connection from B63 to B31.  Next, rewrite rules are used to describe system 
dynamics, i.e., how each neuron evolves as a function of its state and input signals. Since 
many questions of interest in the neural context relate to the temporal behavior of neural 
signaling, our model incorporates tick, and tock, two mechanisms for describing the passage 
of time.  The Maude op tick takes a neuron as argument, and represents the passage of a unit 
of time in some abstract time system for that neuron. In that sense it is like the system clock 
of a computer system.  The tock op takes as argument a configuration of neurons and 
connections between them and propagates ticks through the configuration.  

An example of a rewrite rule is given below. The following rule expresses the behavior of a 
neuron in plateau state where there is positive decay time remaining s(t) stands for the 
successor of a number t. If t is an integer then s(t) = t + 1. The statement to the right 
of the string `****' is a comment line in Maude and is ignored by the Maude processor. 
 
rl[sig.read.on]: **** ignore signal decrement decay 
tick(nid) [ nid : Neuron | thresh: i, decay: d, 
dplevel: l, ttl: s t, out: true, in: j ] 

=> [nid : Neuron | thresh: i, decay: d, dplevel: l, 
ttl: t, out: true, in: 0 ] xmit(nid,j,true). 

 
The rule says that when a unit of time passes, a neuron with state matching the expression 
above the arrow, =>, processes its input signal and updates its state according to the neuron 
expression below the arrow. The expression xmit(nid,j,true) represents electrical 
transmission by the neuron. Then, the remaining decay time is decremented, the neuron 
ignores its input, and continues to transmit. 

When the model neural system executes, each neuron first processes its input. Then, using the 
connection objects, signals are propagated from pre- to postsynaptic neurons, and signals 
arriving at each neuron are combined to determine a net input signal. One way to use the 
model is to introduce an input signal object programmed to fire according to a given pattern 
specified by time units on, time units off and observe the sequence of outputs of the signal 
and neuron objects. This is accomplished in our PL model using a Maude op called icr. 
 
eq icr(k,l,j) = { tock(inc sg(Cmd,k,l,j) 

[EC|from: Cmd, to: B63]) ; [B63 : nil] [B31 : nil] 
[Cmd : nil] }. 
 

This operator takes as argument three integers representing the input signal pattern, the on-
time, off-time (i.e., duration of time the neuron is off), and input signal strength. The equation 
implementing icr uses the tock operator to pass these parameters into a specified neuron 
configuration and signal generator that generates command signals according to these 
parameters. Note that the input stimulus (via the neuron denoted Cmd), is applied to the B63 
neuron in the clause [EC|from: Cmd, to: B63]. Another op called idr, in which 
B63 is replaced by B31 in the same clause, represents stimulating the B31 neuron. The 
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behavior of the two neuron circuit can then be studied by varying input parameters to icr 
and idr, and running the model using Maude’s rewrite command. 

The following are results of an example execution of the model. A system driven by an input 
signal that is on for a long time can be modeled by executing the Maude rewrite on 
icr(100,1,1). This results in alternating burst and resting 
states. This behavior corresponds respectively to Figure 2, 
which is adapted from [15]. 
 
[Cmd : 1 1 1 1 1 1 1 1 1 1 1 1 1] 
[B63 : 0 1 1 1 1 1 0 1 1 1 1 1 0] 
[B31 : 0 1 1 1 1 1 0 1 1 1 1 1 0] 
 
In addition, one of the experimental results observed in [15] is that there is a strong coupling 
between B63 and B31 in the sense that stimulating either gave rise to similar behavior from 
both. Our PL model was able to reproduce this since identical results were obtained (not 
shown here) when rewriting the op idr(100,1,1) instead of icr(100,1,1). It can be 
seen that our approach allows us to easily represent properties of neuron cells that govern 
their behavior such as thresholds and plateau potentials, as well as different types of inter-
cellular connections, and to reproduce key features of known behavior.  

 

 
 

Figure 2  - Rhythmic bursting in B31/32 and B63 neurons   
Continuous stimulation of the B31/32 neuron results in rhythmic bursting in B31/32 and B63 
neurons. Similar behavior results when B63 is stimulated. From [15]. 

 
Also, the model enables easy modification of the properties characterizing a neuron and 
observation of the effects on its behavior, singly and as a part of more complex circuits. The 
ability to carry out such in silico experiments is one of the benefits of this proposed approach. 
We conjecture, therefore, that more complete models which include representations of 
additional neuron properties, will be capable of providing new understanding of more 
complex behavior as well as testable hypotheses regarding the effects of modifying circuit 
elements. 

Conclusions  
Results from the  PL model for the small neural pathway described above have encouraged us 
to believe that such tools can be a very useful new addition to neuroinformatics. Currently, 
neuroinformatics focuses primarily on anatomical features of the brain, which are related to 
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the Human Brain Project (HBP) (see http://www.nimh.nih.gov/neuroinformatics/) and to a 
lesser extent on databases of computational models (see 
http://senselab.med.yale.edu/senselab/modeldb/). The approach that is outlined in the present 
paper represents a paradigm shift in neuroinformatics. PL provides a method for encoding, 
with abstract and qualitative methods, the dynamical properties of neurons, synapses and 
neural circuits. Among the key benefits we anticipate is that the new modeling approach we 
propose here will guide hypothesis generation and, ideally, enable detailed quantitative 
models in a smaller, restricted parameter space. In this way, our approach will benefit 
classical quantitative modeling in neuroscience by enhancing their computational tractability 
and robustness. Another feature of PL models is the usability: the PL models of signal 
transduction are curated by biologists.  This is possible because the representation is very 
stylized, and the difficulty is in inferring the elements of rules from experimental results 
which requires biological insights.  When the neuron modeling techniques mature, we expect 
neuroscientists to be able to develop their own models in a similar manner. In fact it will 
probably be simpler that developing signaling models.  Moreover, the method is easily 
scalable from single cells to small identified neural circuits to complete sub-systems. PL 
models of signal transduction with several thousand species and reactions have been already 
developed and the analyses scale quite well.  Such a simulation environment will be a 
valuable tool in the quest for understanding the ways in which the nervous system functions 
and the ways in which pathologies affect neural function.  More complete models including 
representations of additional neuron properties, might be capable of providing new 
understanding of more complex behavior and testable hypotheses regarding the effects of 
modifying circuit elements, complementing, for example, previously developed H-H models 
of relatively complex neural networks [23].  Of course the representation makes abstractions 
and there is still much work to be done to refine the attributes of neurons and abstractly 
model signal integration and other features adequately.  The future work includes also 
studying the semantic consequences of these abstractions using techniques such as qualitative 
reasoning.  Finally, it will be important to organize the results of these models in order to 
make these available in a structured and accessible way (along the line of the semantic web 
approach [e.g., 26,27]).  As the modeling technology matures we envision that the semantic 
web technology would be useful to develop ‘workflow’ scenarios to analyze behavior of 
proposed neuron circuits under a variety of conditions and parameter setting. 

Methods 
The Pathway Logic Model 
In this section we describe a methodology of formal modeling called Pathway Logic (PL).  
PL [3-7] is an approach to the modeling and analysis of molecular and cellular processes 
based on rewriting logic [24]. PL models reflect the ways that biologists think about 
problems using informal models. They are curated from the literature, and written and 
analyzed using Maude, a rewriting-logic-based system [8,9]. So far, PL has been successful 
in developing models of mammalian signal transduction networks [3-7]. Importantly, a PL 
model itself also serves as a database containing heterogeneous knowledge of facts, 
processes, and pathways at multiple levels of abstraction. 
 
Rewriting Logic and Maude 
Rewriting logic [24], a logical formalism widely used for modeling and reasoning about 
concurrent and interactive systems [25], is based on two simple ideas: 1) states of a system 
are represented as elements of an algebraic data type; and 2) the behavior of a system, i.e., the 
dynamical nature of the system, is given by local transitions between states described by 
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rewrite rules. Algebraic data types are specified by declaring sorts (names of the data types), 
subsort relations (one data type may be a subset of another), and operations (naming 
functions and specifying argument and result types), and by giving equations that define the 
functions computed by the operations. Terms t that denote elements of the data types can be 
variables (denoting some unspecified element), constants, or the application of an operation 
to a tuple of argument terms, f(t1, . . . , tn). In its simplest form, a rewrite rule 
has the form t=>t’ where t and t’ represent a local part of the system state. This rule says 
that when the system has a subcomponent matching t, that subcomponent can rewritten to t’, 
possibly concurrently with changes described by rules matching other parts of the system 
state. The process of application of rewrite rules can be thought of as computation or 
deduction. Rewriting logic allows reasoning about complex changes that could occur given 
the possible transitions specified by a particular symbolic model. The Maude system, which 
executes on commonly available platforms such as Macintosh and Linux, is a very efficient 
implementation of rewriting logic with powerful deduction capabilities automating much of 
the reasoning. There are many kinds of computational analysis that can be performed using 
Maude. Execution can be used to find some pathway leading from an initial state. Search can 
be used to find all pathways leading from an initial state to a state satisfying a desired 
property. The Maude model-checker can be used to answer more complex questions about 
possible pathways leading from a given initial state. Maude also provides efficient support for 
reflection. This allows models to be treated as ndata and makes it easy to program operations 
that transform models to and from representations suitable for input to other logical systems 
for visualization or analysis. See http://maude.cs.uiuc.edu/. 
 
Pathway Logic Basics 
In the PL approach, the state of a biological system such as the epidermal growth factor 
receptor (EGFR) network [4,5], the tumor necrosis factor receptor [6] pathway, or a neural 
signaling pathway is represented as a term in an equational theory and rewrite rules are used 
to describe a local change that could occur when an instance of the left-hand side of a rule 
exists. PL models are structured in four layers: (1) sorts and operations, (2) components, (3) 
rules, and (4) queries. The ‘sorts and operations’ layer declares the main sorts and subsort 
relations, i.e., data types and relations between data types. The components layer specifies 
particular entities (proteins, neurons) and introduces additional sorts for grouping entities in 
families. The rules layer contains rewrite rules specifying individual steps of a process. For 
example, these correspond to reactions in traditional metabolic and interaction databases. The 
queries layer specifies initial states and properties of interest. A feature of PL models that 
enables the execution of in silico experiments is that the models can be executed in Maude to 
simulate a biological signaling process over time. They can also be formally analyzed to 
reason about properties of the states reachable from an initial state. The complete symbolic 
exploration of all reaction interactions can provide useful insights. An example of an in silico 
experiment is to observe whether a desired end state can be reached if specific intermediate 
states are ‘knocked-out’ from the network. 
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