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Abstract. This paper describes representations of biological processes based on
Rewriting Logic and Petri net formalisms and mappings between these represen-
tations used in the Pathway Logic Assistant. The mappings are shown to preserve
properties of interest. In addition a relevant subnet transformation is defined, that
specializes a Petri net model to a specific query to reduce the number of transi-
tions that must be considered when answering the query. The transformation is
shown to preserve the query in the sense that no answers are lost.
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1 Introduction

Pathway Logic [1–3] is an approach to modeling cellular processes based on formal
methods. In particular, formal executable models of processes such as signal transduc-
tion, metabolic pathways, and immune system cell-cell signaling are developed using
the rewriting logic language Maude [4, 5] and a variety of formal tools are used to query
these models. An important objective of Pathway logic is to reflect the ways that biolo-
gists think about problems using informal models, and to provide bench biologists with
tools for computing with and analyzing these models that are natural.

Using the reflective capabilities of Maude, several alternative representations are de-
rived to support use of different tools for visualization and analysis. The Pathway Logic
Assistant (PLA) manages these different representations and, using the IOP+IMaude
framework [6], provides a user interface that supports visualization and interaction with
the models, and access to tools such as the Pathalyzer for carrying out in silico experi-
ments. In particular, PLA uses Petri nets which provide visual representations and algo-
rithms for answering reachability queries interactively, displaying the results in a way
that is natural for biologists.

Being able to use alternative representations with different expressive capabilities
and tools for visualization and analysis is important both for managing complexity and
being able to focus on different properties. In the presence of multiple representations
it is crucial to be able move between representations in semantically meaningful ways,
preserving relevant properties. In this paper we describe a class of rewriting logic mod-
els of biological processes and a mapping of these models to Petri net models. We show
that this mapping preserves computations and satisfaction of temporal formulae. Fi-
nally, we describe transformations that specialize Petri net models to specific queries
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by reducing the set of transitions that need to be considered, and show that transforma-
tions are safe in the sense that query results are not changed. Specializing simplifies a
Petri net model and allows the user to focus attention on the part of the model relevant
to the question under consideration.

Plan. The remainder of this paper is organized as follows. Related work is discussed in
§2. To provide context and motivate the technical results, a brief overview of Pathway
Logic and the ways that biologists can compute with and query Pathway Logic models
is given in section 3. In section 4 the notion of occurrence-based rewrite theory is de-
fined and mappings between such theories and Petri net models are defined and shown
correct. The notion of subnet relevant for a particular query is introduced in section
5, and transformations for producing a safe approximation to the relevant subnet are
defined. Section 6 concludes with a summary and discussion of future directions.

2 Related Work

Computational models of biological processes such as signal transduction fall into two
main categories: differential equations to model kinetic aspects; and symbolic/logical
formalisms to model structure, information flow, and properties of processes such as
what events (interactions/reactions) are checkpoints for or consequences of other events.

Models of system kinetics based on differential equations use experimentally de-
rived or inferred information about concentrations and rates to simulate changes in
response to stimuli as a function of time [7–10]. Such models are crucial for rigor-
ous understanding of, for example, the biochemistry of signal transduction. However,
the creation of such models is impeded by the great difficulty of obtaining accurate
intra-cellular rate and concentration information, and by the possibly stochastic nature
of cellular scale populations of signaling molecules [11, 12]. Analysis of such models
by numerical and probabilistic simulation techniques becomes intractable as the num-
ber of reactions to be considered grows [13]. Furthermore, for the present purpose the
questions we want to ask of a model involve qualitative concepts such as causality and
interference rather than detailed quantitative questions.

Symbolic/logical models allow one to represent partial information and to model
and analyze systems at multiple levels of detail, depending on information available and
questions to be studied. Such models are based on formalisms that provide language for
representing system states and mechanisms of change such as reactions, and tools for
analysis based on computational or logical inference. Symbolic models can be used
for simulation of system behavior. In addition properties of processes can be stated in
associated logical languages and checked using tools for formal analysis. A variety of
formalisms have been used to develop symbolic models of biological systems, including
Petri nets [14], the pi-calculus [15], statecharts [16], and rule-based systems such as
rewriting logic [17]. Each of these formalisms was initially developed to model and
analyze computer systems with multiple processes executing concurrently. Several tools
for finding pathways in reaction and interaction network graphs have been developed.
However as pointed out in [18], paths found in these graphs do have not much to do
with biochemical pathways.
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There are many variants of the Petri net formalism and a variety of languages
and tools for specification and analysis of systems using Petri nets. Petri nets have a
graphical representation that corresponds naturally to conventional representations of
biochemical networks. They have been used to model metabolic pathways and simple
genetic networks (e.g., see [19–26]). These studies have been largely concerned with
dynamic or kinetic models of biochemistry. In [27] a more abstract and qualitative view
is taken, mapping biochemical concepts such as stoichiometry, flux modes, and conser-
vation relations to well-known Petri net theory concepts.

A pi-calculus model for the receptor tyrosine kinase/mitogen-activated protein ki-
nase (RTK/-MAPK) signal transduction pathway is presented in [28]. BioSPI, a tool
implementing a stochastic variant of the pi-calculus, has been used to simulate both the
time and probability of biochemical reactions [29]. So far, symbolic/logical analysis
tools have not be used to analyze BioSPI models.

In [30] a continuous stochastic logic and the probabilistic symbolic model checker,
PRISM, is used to express and check a variety of temporal queries for both transient
behaviors and steady state behaviors. Proteins modeled as synchronous concurrent pro-
cesses, and concentrations are modeled by discrete, abstract quantities.

BioAmbients [31], an adaptation of the Ambients formalism for mobile computa-
tions has been developed to model dynamics of biological compartments. BioAmbient
type models can be simulated using an extension of the BioSPI tool. A technique for
analysis of control and information flow in programs has been applied to analysis of
BioAmbient models [32]. This can be used, for example, to show that according to the
model a given protein could never appear in a given compartment, or a given complex
could never form.

Statecharts naturally express compartmentalization and hierarchical processes as
well as flow of control among subprocesses. They have been used to model T-cell acti-
vation [33, 34]. Although Statecharts is a mature technology with a number of associ-
ated analysis and verification tools, it does not appear that these have been applied to
the T-cell model. Live Sequence Charts [35] are an extension of the Message Sequence
Charts modeling notation for system design. This approach has been used to model the
process of cell fate acquisition during C.elegans vulval development [36].

P-systems is a multiset rewriting formalism that provides a built in notion of loca-
tion. A continuous variant of P-systems is used in [37] to model intra-cellular signaling.
Locations are used to represent compartmental structure of a cell. Abstract objects rep-
resent proteins and small molecules, with different objects used to represent different
modifications / states of the same protein. The underlying relation between a protein
and its modifications is not made explicit. A system state specifies the quantity of each
object in each location. A rate function associates to each rule a function from system
states to real numbers, representing the rate of the reaction in that state. This determines
how a system state evolves over time. Such models can be used to predict concentration
of objects, for example phosphorylated ERK, over time by a discrete step approxima-
tion method.

A simple formalism for representing interaction networks using an algebraic rule-
based approach very similar to the Pathway Logic approach is presented in [38, 39].
The language has three interpretations: a qualitative binary interpretation much like the
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Pathway Logic models; a quantitative interpretation in which concentrations and reac-
tion rates are used; and a stochastic interpretation. Queries are expressed in a formal
logic called Computation Tree Logic (CTL) and its extensions to model time and quan-
tities. CTL queries can express reachability (find pathways having desired properties),
stability, and periodicity. Techniques for learning new rules to achieve a desired system
specification are described in [40].

BioSigNet (BSN) [41] is a system for representing and reasoning about signaling
networks. A BSN knowledge base encodes knowledge about a signal network, includ-
ing logical statements based on symbols termed fluents and actions. Fluents represent
the various properties of the cell and its components while actions denote biological
processes (e.g. biochemical reactions, protein interactions) or external interventions.
The logical statements describe the impact of these actions on the fluents, how actions
can be triggered or inhibited inside the cell. A BSN knowledge base is queried using
a temporal logic language over propositions expressing presence or absence of partic-
ular fluents. Three classes of queries are identified: prediction (can a state be reached);
explanation (find initial conditions that lead to a specified condition); and planning (de-
termining when an action should occur in order to achieve a desired result). In [42] BSN
is used to model the ERK signaling network.

Models that rely on quantitative information (BioSPI, PRISM, P-systems) are lim-
ited by the difficulty in obtaining the necessary rate data. Missing or inconsistent data
(from experiments carried out under different conditions, and on different cell types)
are likely to yield less reliable predictions. Models that abstract from quantitative de-
tails avoid this problem, but the abstractions may lead to prediction of unlikely behavior,
or miss subtle interactions.

The Pathway Logic Assistant extends the basic representation and execution capa-
bility with the ability to support multiple representations, to use different formal tools
to simplify and analyze the models, and to visualize models and query results. Other
efforts to integrate tools for manipulating models include the Systems Biology Work-
bench [43] the Biospice Dashboard [44], IBM Discoverylink [45], and geneticXchange,
Inc [46].

3 Pathway Logic

As mentioned above, Pathway Logic models of biological processes are developed us-
ing the Maude system [4, 5] a formal language and tool set based on rewriting logic.
Rewriting logic [17] is a logical formalism that is based on two simple ideas: states of a
system are represented as elements of an algebraic data type; and the behavior of a sys-
tem is given by local transitions between states described by rewrite rules. The process
of application of rewrite rules generates computations (also thought of as deductions).
In the case of biological processes these correspond to paths. Using reflection, modules
and computations are represented as terms of the Maude meta language. This makes it
easy to compute with models and paths.
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3.1 Pathway Logic Basics

Pathway Logic models are structured in four layers: (1) sorts and operations, (2) com-
ponents, (3) rules, and (4) queries. The sorts and operations layer defines the main
sorts, subsort relations, and operations for representing cell states. The sorts of enti-
ties include Chemical, Protein, DNA, Complex, and Enclosure (cells and other
compartments). These are all subsorts of the sort, Soup, that represents ‘liquid’ mix-
tures, as multisets. The sort Dish is introduced to encapsulate a soup as a state to be
observed. Post-translational protein modification is represented by terms of the form
[P - mods] where P is a protein and mods is a set of modifications. Modifications
can be abstract, just specifying being activated, bound, or phosphorylated, or more spe-
cific, such as, phosphorylation at a particular site. For example, the term [Cas - act]

represents the activation of the protein Cas. A cell state is represented by a term of the
form {CM | cm { cyto }} where cm stands for a soup of entities in or at the cell
membrane and cyto stands for a soup of entities in the cytoplasm.

The components layer specifies particular entities (proteins, chemicals, DNA) and
introduces additional sorts for grouping proteins in families. For example ErbB1L is
declared to be a subsort of Protein. This is the sort of ErbB1 ligands whose ele-
ments include the epidermal growth factor EGF. The rules layer contains rewrite rules
specifying individual signal transduction steps representing processes such as activa-
tion, phosphorylation, complex formation, or translocation. The queries layer specifies
initial states and properties of interest.

Below we give a brief overview of the representation in Maude of signal transduc-
tion processes, illustrated using a model of Rac1 activation. This model and several
others are available as part of the Pathway Logic Demo available from the Pathway
Logic web site http://pl.csl.sri.com/ along with papers, tutorial material
and download of the Pathway Logic Assistant tool.

3.2 Modeling Activation of Rac1 in Pathway Logic

Rac1 is a small signaling protein of the Ras superfamily. It functions as a protein switch
that is “on” when it binds the nucleotide triphosphate GTP, and “off” when it binds the
hydrolysis product GDP. The Pathway Logic model of Rac1 activation was curated us-
ing [47] and many other references (cited as metadata associated with individual rules).
In the following we show an initial state for study of Rac1 activation and two example
rules, and briefly sketch some of the ways one can compute with the model. The initial
state (called rac1demo) is a dish PD( ... ) with a single cell and two stimuli in the
supernatant, EGF and FN, represented by the following term.

rac1demo = PD(FN EGF
{CM | EGFR Ia5Ib1 Src PIP2 [Actin - poly][HRas - GDP][Rac1 - GDP]

{Crk2 Erk2 Mek1 PI3K Shp2 bRaf C3g Dock Sos1
Cas E3b1 Elmo Eps8 Fak Gab1 Grb2 Vav2 }} )

The cell membrane (shown on the line beginning CM) has an EGF receptor (EGFR) and
an integrin (Ia5Ib1) that binds to FN. The term [Rac1 - GDP] represents the Rac1
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protein in its ‘off’ state. The cell cytoplasm (shown on the last two lines) contains
additional proteins that participate in the signaling process.

One way to activate Rac1 begins with the activation of the EGFR receptor due to the
presence of the EGF ligand. The following rule represents this signaling step.

rl[1.EGFR.is.act]:
?ErbB1L:ErbB1L {CM | cm EGFR {cyto }} =>
?ErbB1L:ErbB1L {CM | cm [EGFR - act] {cyto }} .

*** ErbB1Ls are AR EGF TGFa Btc Epr HB-EGF

The term ?ErbB1L:ErbB1L is a variable ranging over the sort ErbB1L. The terms cm
and cyto are variables standing for the remaining components in the membrane and cy-
toplasm, respectively. The rule matches a part of the rac1demo dish contents by binding
the variable ?ErbB1L:ErbB1L to EGF, the variable cm to Ia5Ib1 ... [Rac1 - GDP]
(every thing in the cell membrane except EGFR), and the variable cyto to the contents of
the cytoplasm {Crk2 ... Vav2}. Applying the rule replaces EGFR by [EGFR - act]
resulting in the dish

PD(FN EGF
{CM | [EGFR - act] Ia5Ib1 Src PIP2 [Actin - poly]

[HRas - GDP][Rac1 - GDP]
{Crk2 Erk2 Mek1 PI3K Shp2 bRaf C3g Dock Sos1
Cas E3b1 Elmo Eps8 Fak Gab1 Grb2 Vav2}} )

The following is one of three rules characterizing conditions for the Rac1 switch to be
turned on.

rl[256.Rac1.is.act-3]:
{CM | cm [Cas - act][Crk2 - act][Dock - act] Elmo [Rac1 - GDP]

{cyto }} =>
{CM | cm [Cas - act][Crk2 - act][Dock - act] Elmo [Rac1 - GTP]

{cyto }} .

This rule describes activation resulting from assembly of Elmo with activated Cas,
Crk2, and Dock at the cell membrane. Executing the rule replaces [Rac1 - GDP] by
[Rac1 - GTP], turning Rac1 on, and leaves the remaining components unchanged.

Maude provides several ways to compute with a model. One can rewrite an initial
state such as rac1demo above, to see a possible final state, or search for all states
satisfying some predicate. To find a path satisfying some (temporal logic) property the
Maude model-checker can be used. The properties of interest for Pathway Logic are
expressed in Maude as patterns matching states with specific proteins, possibly with
modifications, occurring in particular compartments (called goals), or requiring that
particular proteins do not appear (avoids).

Example 1: racAct3 Property. As an example, to find the path stimulated by FN alone,
we define a property (called racAct3) that is satisfied when Rac1 is activated and
the EGF stimulus is not used (EGFR is not activated), thus forcing the FN stimulus to
be selected. The property racAct3 is axiomatized by assertions stating which dishes
satisfy the property (the relation |=) using patterns such as the following.
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ceq PD (out:Soup
{CM | cm [Rac1 - GTP] {cyto}}) |= racAct3 = true .

if not(cm has [EGFR - act])

The model-checker is asked to check the assertion that there is no computation satisfy-
ing this property and a path can be extracted from a counterexample if one is found.

3.3 The Pathway Logic Assistant

The textual representation of cell states and pathways quickly becomes difficult to use
as the size of a model grows, and an intuitive graphical representation becomes in-
creasingly important. In addition, it becomes important to take advantage of the simple
structure of PL models when searching for paths and carrying out other analyses. A
Pathway Logic model, such as the Rac1 model, meeting certain simple conditions, can
be transformed into a Petri net model by specializing the rules to the model’s initial
state. Petri nets have a natural graphical representation and can be analyzed using spe-
cial purpose analysis tools.

Our Petri net models are a special case of Place-Transition Nets given by a set of
occurrences (places in Petri net terminology) and a set of transitions [48]. Occurrences
can be thought of as atomic propositions asserting that a protein (in a given state) or
other component occurs in a given compartment. A system state is a set of occurrences
(called a marking in Petri net terminology), giving the propositions that are true. A
transition is a pair of sets of occurrences. A transition can fire if the state contains the
first set of occurrences. In which case the first set of occurrences is replaced by the
second set. PL goal properties translate to Petri net properties expressed as occurrences
that must be present (places to be marked) and avoids properties translate to occurrences
that must not appear (places not to be marked) in a computation. Paths leading from an
initial state to a state satisfying a set of goals can be represented compactly as a Petri
net consisting of the transitions fired in the path, thus giving query results a natural
graphical representation. Execution of the path net starting with the initial state, leads
to a state satisfying the goals, and the net representation makes explicit the dependency
relations between transitions: some can fire concurrently (order doesn’t matter), and
some require the output of other transitions to be enabled.

The Pathway Logic Assistant (PLA) manages the different model and computa-
tion representations and provides functions for moving from one representation to an-
other, for answering user queries, displaying and browsing the results. The principle
data structures are: PLMaude models, Petri net models, Petri subnets, PNMaude mod-
ules, computations (paths), and Petri graphs. Here we give an overview of the PLMaude
and Petri net models and mappings between them, illustrated by the model of Rac1 ac-
tivation. Details are given in the next section, where we define the notion of occurrence-
based rewrite theory that abstracts the relevant features of PLMaude models, and spec-
ify the main properties required for mappings between and transformations of repre-
sentations in order to preserve meaning. Petri graphs are used to represent Petri nets
as data structures that have a natural visual representation. A Petri graph has two kinds
of node: occurrence and rule. Edges connect nodes representing occurrences of a rule
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premise (lhs) to the rule node and the rule node to the nodes representing occurrences
of the rule conclusion (rhs).

PLMaude models are Maude modules, such as the modules specifying the model of
Rac1 activation discussed in §3.2, having the four layer structure described in §3.1. A
PLMaude model must also obey the conservation law that components can be modified,
composed and decomposed, but are not created out of nothing. As discussed in §3.1-
3.2, PLMaude states are represented as a mixture of cells and ligands where location
of proteins and other chemicals is represented by the algebraic structure of a term.
To make the Petri net structure explicit an alternative representation is defined using
multisets of occurrences. An occurrence is a pair consisting of a protein, complex, or
other chemical component and a location. The location uniquely identifies the position
of the component within the algebraic term (modulo multiset equality). For example,
the dish

PD(EGF {CM | EGFR {Erk2}})

is represented by the occurrences

< EGF,out > < EGFR,cm > < Erk2,cyto >

Although soups and occurrences are formalized as multisets, initial states contain only
sets (no duplication) and we have required that PLMaude rules preserve this property.

A Petri net model is a pair (T , I ) consisting of a set of transitions T , and an ini-
tial state I (a set of occurrences). Each transition consists of a rule identifier, a pair
of occurrence sets (the pre-occurrences and the post-occurrences). The mapping of a
PLMaude model, with a specified initial dish D, to a Petri net model first determines
an upper approximation to the set of components that might occur in each dish lo-
cation by a collecting operation. This is done by starting with D, and repeating the
collection cycle until nothing new is collected. In the collection cycle, for each rule
that can be applied to the current dish, the result of applying the rule is merged into
the current dish (by adding any new components to each compartment). For example,
applying the rule [1.EGFR.is.act] to the dish rac1demo in collecting mode would
add [EGFR -act] to the membrane rather using it to replace EGFR. The set of transi-
tions T is then the set of rule instances that apply to the collected dish, converted to
occurrence pairs. For example the rule [1.EGFR.is.act] instantiated with EGF for
?ErbB1L:ErbB1L is represented by the triple

(1.EGFR.is.act, < EGF, out > < EGFR, cm >,
< EGF, out > < [EGFR - act], cm >)

The initial state I is the conversion of the dish D to the occurrence representation.
Figure 1 shows the Petri net representation of the model of Rac1 activation produced
by this mapping.

A Petri subnet is a tuple (T , I ,G ,A) consisting of a set of transitions, T , an initial
marking, I a goal marking G , and an avoids set A. A Petri subnet specifies an analysis
problem, namely finding a computation starting from the initial marking, and reaching a
state with the goals marked, using the transitions in the given set, without ever marking
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Fig. 1. Rac1 activation model as a Petri net. Ovals are occurrences, with initial occurrences
darker. Rectangles are transitions. Two way dashed arrows indicate an occurrence that is both
input and output. The full net is shown in the upper right thumbnail. A magnified view of the
portion in the red rectangle is shown in the main view.

an avoid. Petri subnets are generated by a ‘relevant subnet’ computation that simplifies
the specified analysis problem. Although a Petri subnet is a Petri net, it is only equiva-
lent to the original net for a goal set that is a subset ofG or an avoid set that is a superset
of A. For example, for a goal that is not in G there may be a path in the original net, but
not in the subnet, since transitions needed for this goal may have been discarded as not
being relevant. Figure 2(a) shows the relevant subnet of the Rac1 activation model when
the goal is activation of Rac1, avoiding activation of EGFR (Maude property racAct3

in Example 1 of §3.2).

Computations are data structures used to represent system executions. We model a
computation as a sequence of steps, each step being a triple consisting of a source state,
a rule instance or transition that applies to that state, and a target state, the state resulting
from the rule application. The target state of the ith step of a computation must be equal
to the source state of the i+ 1st step. A compact representation of a computation is the
Petri net consisting of the initial state together with the set of rule instances occurring
as computation steps. We call this net a path. Figure 2(b) shows a path in the subnet of
Figure 2(a). It can be executed as follows: If all of the ovals connected to a box by an
incoming arrow (solid or dashed) are colored dark then color the outputs dark and make
the inputs connected by solid arrows light color. Repeating this procedure, a state can
be reached with Rac1 activated (Rac1-GTP colored dark).
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(a) Subnet (b) Path

Fig. 2. FN stimulation of Rac1 activation.

3.4 Efficient Analysis of Petri nets

The path shown in Figure 2(b) was found by the LoLA (Low Level Analyzer) Petri
net analysis tool [49, 50]. LoLA uses “stubborn set reduction”, which is a technique
that exploits the ease of determining the independence of certain transitions in the Petri
nets. Specifically, a marking (state) m may have many possible successor markings,
each resulting from a transition that is enabled in m. In many cases, transitions t1 and
t2 are enabled in m because they are concurrent—either one can fire first, but they will
both fire eventually. Nets with a lot of concurrency will also have a lot of states resulting
from all the permutations of firing orders of concurrent transitions.

Stubborn set reduction prunes the state graph by recognizing concurrently enabled
transitions and allowing them to be fired in a fixed order, instead of considering all
the permutations. Subtle conditions must be met to ensure that a condition is reachable
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in the reduced graph if and only if it is reachable in the original graph (the reader is
referred to [51]). For highly concurrent graphs, stubborn set reduction can accelerate
the solution of the reachability problem by many orders of magnitude.

For reachability queries on Pathway Logic nets, answering a reachability query that
would have taken hours using a general purpose model-checking tool takes on the order
of a second in LoLA—fast enough to permit interactive use. As an example, LoLA was
run on 5 examples, with and without the stubborn set reduction option turned on. The
examples were 5 queries on a single Petri net, each causing exploration of a different
part of the network. The experiments were conducted on a an IBM ThinkPad X22 with
an 800 MHz Pentium III CPU and 256 MB of RAM. All the examples completed within
a fraction of a second with stubborn set reduction turned on. With stubborn set reduction
turned off 4 of the examples completed within a fraction of a second. The 5th example
was stopped after 28.5 minutes. At this point LoLA had generated 2,495,854 states,
traversed 35,400,000 edges, and was using 500 MB of virtual memory, and all 256MB
of physical memory.

In our experience, these results are typical. Without stubborn set reduction, LoLA
either finishes quickly or runs for a very long time. With stubborn set reduction, it very
reliably finishes in a fraction of a second on the many examples we have tried.

It is beyond the scope of this paper to compare different model-checking tools for
Pathway Logic models. The interested reader can find such a comparison in [52]. We
note that for the goals and avoids type queries, LoLA’s performance is by far the best.

4 Relating PLMaude and Petri Nets

It is well known that Petri nets can be represented in rewriting logic [48]. The various
forms that PLMaude models have taken as the modeling ideas have matured have led us
to identify a special class of rewrite theories, called occurrence-based rewrite theories,
that, restricted to terms reachable from a given initial term, have a natural representa-
tion as Petri nets. The idea is to build on the equivalence of the dish and occurrences
representations of states and to identify the features of PLMaude models needed to
ensure that the translation to the Petri net formalism preserves computations and goals-
avoids properties. Furthermore, the resulting Petri net models can be transformed back
into rewriting logic, again preserving computations and goals-avoids properties. In this
section we define the mappings between PLMaude and Petri net models and the subnet
reduction, and sketch proofs of correctness. These mappings are implemented in Maude
and used in PLA.

4.1 Some rewriting logic notation

We first introduce some notation for talking about rewrite theories. A rewrite theory,
R, is a triple ((Σ,E ),R) where (Σ,E ) is an equational theory (for example, in order
sorted logic) with sorts and operations given by Σ and equations E , and R is a set of
rules of the form (t0 ⇒ t1 if c) where t0, t1 are terms, the rule premise and conclusion
respectively, and c is a boolean term, the rule condition. Viewing PLMaude as a rewrite
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theory, (Σ,E ) is given by the first two layers (sorts and operations, components) and
R is given by the rules layer.

A context, C , is a term with a single hole, denoted by [ ], used to indicate the location
of a rewrite application. C [t] is the result of placing t in the hole of C .

A substitution σ is a finite mapping from variables to terms, preserving sort, and
σ(t) is the result of applying σ to the term t.

A rule instance is a triple ρ = (r ,C , σ) where r is a rule, C is context, and σ
is a substitution. For a rule instance ρ as above we write t

ρ−→ t′ if t = C [σ(t0)], t′ =
C [σ(t1)], and σ(c) holds (rewrites to true). In this case we say that ρ is an application of
r to t. We write t r−→ t′ if there is some ρ = (r ,C , σ) such that t

ρ−→ t′. A computation
over R is a sequence of rewrites of the form

R ` s0
ρ1−→ s1 . . .

ρk−→ sk

with steps si−1
ρi−→ si for 1 ≤ i ≤ k.

Note that rewriting is modulo E , that is the meaning of of the symbol ‘=’ in the
matching equations is defined by the equational theory E . The context makes explicit
the location within a term where the rule applies. This is needed because when rewriting
modulo equations the usual notion of path to a subterm of a syntax tree is not meaning-
ful.

Example 2: Rewriting concepts. Consider the following:

– S0 = EGF {CM | EGFR {Mek1 [Mekk3 - act]}}

– S1 = EGF {CM | EGFR {[Mek1 - act] [Mekk3 - act]}}

– rmek = [Mekk3 - act] Mek1 => [Mekk3 - act] [Mek1 - act]

– C = EGF {CM | EGFR {[]}}

Then ρ = (rmek, C, ∅) is rule instance (with empty substitution, ∅) such that S0
ρ−→

S1. Note that S0 can also be written EGF {CM | {Mek1 [Mekk3 - act]} EGFR}.
Syntactically the subterm that matches the rule right hand side is at a different position
in this case, but modulo associativity and commutativity the two ways of writing the
term have the same meaning. The corresponding context EGF {CM | {[]} EGFR} is
also equivalent to C, thus giving a representation of position that is independent to the
representation of equivalence class.

4.2 Occurrence-based rewrite theories

There are five conditions to be met for a rewrite theory to be an occurrence-based rewrite
theory, two conditions on the representation of state (SC1 and SC2) and two conditions
on rules (RC1, RC2) and one condition on the interaction of states and rules SRC).

In the following assume we are given a rewrite theory, R, with distinguished sort S
of elements representing system states to be analyzed.
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SC1. The first condition is that S is generated from a base sort, by constructors such
as the PLMaude enclosure constructors, in such a way that one only needs to know
the ‘location’ of the base subterms to determine an element of S. More precisely, we
require that there be a base sort B, a sort L, of locations, and a sort O of occurrences,
where elements of O have the form <b, l> for base element b and location l, and two
functions

s2o(_) : S → Pω[O] and o2s(_) : Pω[O]
p→ S

such that o2s(s2o(s)) = s where
p→ denotes partial functions and Pω[O] denotes finite

sets from O.

SC2. We extend s2o(_) to contexts and terms with variables, by treating holes and
variables as basic terms, and we require a function cloc(C ) that gives the location of
the hole in a context. We also relativize the map from states to occurrences so that
s2o(t, l) gives the occurrences for t in a context with hole location l. Thus

s2o(C [t]) = O ∪ (s2o(t, l)) where l = cloc(C ), s2o(C ) = O ∪<[ ], l>.

The SC2 requirement is that if s2o(s0) = O ∪ s2o(σ(t0), l) then we can find C such
that cloc(C ) = l and s0 = C [σ(t0)].

Example 3: Checking SC1, SC2 for PLMaude. In PLMaude, the base sort is called
Thing, which has subsorts Protein and Chemical amongst others. Each membrane
enclosed compartment has two associated locations, the membrane and the interior. For
example, a cell has locations cm and cyto, and things not inside a cell have location
out. Continuing the notation of Example 2 from §4.1, EGF has location out and EGFR

has location cm and we have

– s2o(S0) =
< EGF,out > < EGFR,cm > < Mek1,cyto > < [Mekk3 - act],cyto >

– cloc(C) = cyto

– s2o(S2, cloc(C)) = < Mek1,cyto > < [Mekk3 - act],cyto >

where S2 is the left-hand side of rmek. From the discussion in the previous sections, it
is easy to see that PLMaude modules satisfy conditions SC1 and SC2.

SRC. We require that there is an associative and commutative operation on states

merge : S → S such that rewriting is preserved by merging. Specifically, if s0
(r ,C ,σ)−−−−−→

s′0, s1 = merge(s0, s′) and s′1 = merge(s′0, s
′) then s1

(r ,C ′,σ′)−−−−−−→ s′1 for some C ′, σ′,
such that σ/B = σ′/B and cloc(C ) = cloc(C ′) where σ/B is the restriction of σ to
basic variables. Using associativity and commutativity we extend the merge operation
to sets: merge(s, S) is the result of merging elements of S into s in some order.

Example 4: Merging. Continuing with the notation of example 2 we have

– merge(S0, S1) = EGF {CM | EGFR{Mek1 [Mek1 - act] [Mekk3 - act]}}
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RC1. We require that the variables appearing in rule terms either have basic sorts, or
‘mixture’ sorts (for example finite sets). This allows us to convert a rule application in-
stance (r ,C , σ) into a pair of occurrence sets that represent the actual change described
by the rule. The mixture variables stand for the remaining basic terms and substructure
at each location of interest that are not changed by the rule. Furthermore, we assume
that the variables occurring in the rule condition have basic sorts.

Definition: Collection. Now we define a (partial) function that iteratively merges the
reachable states into one state ŝ in which each location contains all basic elements that
could appear at that location in a reachable state. Given s ∈ S define ŝ by

ŝ = sk if sk = sk+1 where s0 = s and si+1 = merge(si, {s′ (∃ρ)(si
ρ−→ s′)})

RC2. The final condition for R to be occurrence-based (relative to a choice of initial
states) is that for any initial state s collection terminates, i.e. there is some k such that
sk = sk+1.

4.3 Mapping occurrence-based rewrite theories to Petri nets

To define the mapping we need some Petri net notation. A transition τ over an occur-
rence set O is a pair (Oi,Oo) ∈ Pω[O]×Pω[O] (for simplicity we omit the transition
labels). We define the pre- and post-occurrences of a transition as follows:

pre(Oi,Oo) = Oi post(Oi,Oo) = Oo.

The input and output occurrences are the pre- and post-occurrences with the shared
occurrences removed.

in(Oi,Oo) = Oi −Oo out(Oi,Oo) = Oo −Oi.

Note that

in(Oi,Oo) ∩ out(Oi,Oo) = ∅

(pre(Oi,Oo)− in(Oi,Oo))

= (post(Oi,Oo)− out(Oi,Oo)) = (pre(Oi,Oo) ∩ post(Oi,Oo))

A Petri net model over occurrences O is a pair (T , I ) where T is a set of transitions
and I ∈ Pω[O] is the initial state/marking. A computation over T is a sequence

T ` O0
τ1−→ O1 . . .

τk−→ Ok

such that pre(τi+1) ⊆ Oi and Oi+1 = (Oi − in(τi+1)) ∪ out(τi+1).



Multiple Representations of Biological Processes 15

Definition: Rule2Transition. We extend the occurrence mapping to map rule instances
to transitions.

s2o((t0, t1, c),C , σ) = (s2o(t0,C , σ), s2o(t1,C , σ))

where
s2o(t0,C , σ) = s2o((σ/B)(t0), cloc(C ))†.

Where the † means to drop variable occurrences <V, l> for mixture variables V . Note
that if (r ,C , σ) and (r ,C ′, σ′) are as in RC2 then s2o(r ,C , σ) = s2o(r ,C ′, σ′). (See
below for examples of s2o(_) applied to rules.)

Definition: OccB2Petri. Assume R is occurrence-based, with state sort S, and s is an
initial state. The Petri net model, P(R, s), associated with R and s, has occurrences
s2o(ŝ) (the result of collection), initial state s2o(s), and a transition for each rule in-
stance that applies to ŝ.

P(R, s) = (Ts, s2o(s)) where Ts = {s2o((r ,C , σ)) (∃s′)(ŝ (r ,C ,σ)−−−−−→ s′)}

Example 5: A Tiny model and its Petri net representation. We now introduce a tiny
hypothetical model to illustrate the transformation to a Petri net in some detail. The
resulting Petri net, TinyPN, will also be used in §5 to illustrate the transformations
defined there. The tiny model defines two subsorts of Protein, AP and BP. There are
six basic proteins: A0,A1 of sort AP, B0 of sort BP, and E0,E1,C of sort Protein.

sorts AP BP . subsort AP BP < Protein .
ops A0 A1 : AP . op B : BP . ops E0 E1 C : Protein .

There are four rules. Rule T0 expresses activation of A0 by E0 and recruitment of A0 to
the cell membrane. As in §3.2 cm and cyto are variables needed in order for the rule
to apply to any cell with the specified components. Rule T1 expresses activation and
recruitment of any protein of sort AP by E1. Thus a variable ?A:AP of sort AP is used in
the rule. Rule T2 says that any activated protein of sort AP can activate any protein of
sort BP. Rule T3 says that activated A0 can activate protein C.

rl[T0]: {CM | cm E0 {cyto A0}} =>
{CM | cm E0 [A0 - act] {cyto}}

rl[T1]: {CM | cm E1 {cyto ?A:AP}} =>
{CM | cm E1 [?A:AP - act] {cyto}}

rl[T2]: {CM | cm [?A:AP - act] ?B:BP {cyto}} =>
{CM | cm [?A:AP - act] [?B:BP - act] {cyto}}

rl[T3]: {CM | cm [A0 - act] C {cyto}} =>
{CM | cm [A0 - act] [C - act] {cyto}}

The initial state of the tiny model is given by the term tinyDish. It contains B,C,E0,E1
at the cell membrane and A0,A1 in the cytoplasm.
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tinyDish = PD({CM | B C E0 E1 {A0 A1}}) .

The collection starting with the dish tinyDish using the rules T0,T1,T2 yields the
dish tinyDish*. Rule T0 adds [A0 - act] to the membrane compartment, rule T1

instantiated with ?A:AP as A1 adds [A1 - act] to the membrane compartment. The
instantiation of rule T1 with ?A:AP as A0 adds nothing new. Rule T2 instantiated with
?B:BP as B0 adds [B0 - act] to the membrane compartment. For the dish tinyDish
there is only one instantiation of rule T2. Rule T3 adds [C - act] to the membrane
compartment.

tinyDish* = PD({CM | [A0 - act] [A1 - act] [B - act] B
C [C -act] E0 E1
{A0 A1}}) .

The Petri net TinyPN has transitions tinyT, obtained by applying s2o( ) to rule in-
stances for tinyDish*, and occurrences tinyI, the result of s2o(tinyDish). Here
we added labels to the transitions for convenient reference. If there is more than one
rule instance, the transition labels are indexed by instance numbers, just to keep labels
unique.

TinyPN = (tinyT,tinyI)
tinyI = < B,cm >< C,cm >< E0,cm >< E1,cm >< A0,cyto >< A1,cyto >
tinyT =

(T0, < E0,cm> < A0,cyto > => < E0,cm > < [A0 - act],cm >)
(T1.0, < E1,cm> < A0,cyto > => < E1,cm > < [A0 - act],cm >)
(T1.1, < E1,cm> < A1,cyto > => < E1,cm > < [A1 - act],cm >)
(T2.0, < [A0 - act],cm >< B,cm > =>

< [A0 - act],cm >< [B - act],cm >
(T2.1, < [A1 - act],cm >< B,cm > =>

< [A1 - act],cm >< [B - act],cm >
(T3, < [A0 - act],cm >< C,cm > =>

< [A0 - act],cm >< [C - act],cm >

For example there are two instances of rule T1, ρ0 = ((t0, t1),C , σ0) and ρ1 =
((t0, t1),C , σ1) where

– t0 = {CM | cm E1 {cyto ?A:AP}}
– t1 = \{CM | cm E1 [?A:AP - act] \{cyto\}\}
– C = PD([])
– σ0/B binds ?A:AP to A0
– σ1/B binds ?A:AP to A1

Using the rule for transforming instances to transitions we obtain the transition labeled
T1.0 as follows.

s2o((t0, t1),C , σ0)

= (s2o((σ0/B)(t0), cloc(C )), s2o((σ0/B)(t1), cloc(C )))

= (s2o({CM | cm E1{cyto A0}}, out),
s2o({CM | cm E1[A0 - act]{cyto}}, out))

= (< E1, cm >< A0,cyto >, < E1,cm >< [A0 - act],cm >)
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Theorem: OccB2Petri. For R an occurrence-based rewrite theory and s an initial state,
the mapping to Petri nets preserves computations. Specifically, if (Ts, s2o(s)) = P(R, s),
then

R ` s = s0
ρ1−→ s1 . . .

ρk−→ sk ⇔ Ts ` s2o(s0)
s2o(ρ1)−−−−−→ s2o(s1) . . .

s2o(ρk)−−−−−→ s2o(sk).

Proof Sketch. By induction on the computation length k. If si
ρi+1−−−→ si+1 then

s2o(ρi+1) ∈ Ts by SRC. Let ρi+1 = (r ,C , σ) with r = (t0, t1, c) and l = cloc(C ).
Then si = C [σ(t0)], si+1 = C [σ(t1)], and for some occurrence set O s2o(si) =

s2o(σ(t0), l)∪O and s2o(si+1) = s2o(σ(t1), l)∪O. Thus s2o(si)
s2o(ρi+1)−−−−−−→ s2o(si+1).

Conversely, let Oi
τi+1−−−→ Oi+1, and by induction Oi = s2o(si) for some reachable si.

Also τ = (O0,O1) = s2o(r ,C , σ) where (r ,C , σ) applies to ŝ. We can find O′

such that Oi = O′ ∪ O0 and Oi+1 = O′ ∪ O1. By SC3 we can find C ′, σ′ such that

si = C ′[σ′(t0)], and si
(r ,C ′,σ′)−−−−−−→ si+1 where s2o(si+1) = Oi+1.

Counterexample. To see that requirement (SRC) that merging preserves rewrites is
needed, consider the following rule variants in the Pathway Logic language:

[r1]: {CM | Ras {cyto Rac}} => {CM | Ras [Rac - act]{cyto}}
[r2]: {CM | cm Ras {cyto Rac}} => {CM | cm Ras [Rac - act]{cyto}}

where cyto and cm are variables standing for any other components located in the cyto-
plasm or cell membrane respectively. Consider the state {CM | Ras Grb2 {Src Rac}}

which can be obtained from {CM | Ras {Src Rac}} by a merge. The rule r2 ap-
plies but r1 does not, although r1 applies to the ‘before merge’ state. Both rules trans-
form to the same Petri net transition:

< Ras,CM > < Rac,Cyto > => < Ras,CM > < [Rac - act],CM >

which indeed applies to the corresponding occurrence state

< Ras,cm > < Grb2,cm >< Rac,cyto > < Src,cyto >

Definition: Petri2RWL. The conversion of an occurrence Petri net to a rewrite theory
is simple. If (Ts, s2o(s)) = P(R, s), then PS(R, s) is the rewrite theory with the
equational part of R extended with the definition of occurrences, and rules

{Oi ⇒ Oo (Oi,Oo) ∈ Ts}

Theorem: Petri2RWL. The mapping PS preserves computations.

PS(R, s) ` s2o(s) τ1−→ . . .
τk−→ Ok ⇔ Ts ` s2o(s) τ1−→ . . .

τk−→ Ok
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5 Relating and transforming queries

5.1 Preservation of properties

The temporal logic used by the Maude model checker, LTL, is based on atomic propo-
sitions that can be defined by boolean functions in Maude. In the case of an occurrence-
based rewrite theory, we restrict attention to propositions that are positive (goals) and
negative (avoids) occurrence tests – basic component b occurs (or does not occur) at
location l. These propositions translate to simple membership tests <b, l> ∈ s2o(s) in
the corresponding Petri net model. For example, the property racAct3 presented in Ex-
ample 1 of §3.2 contains one positive occurrence test (for the presence of < [Rac1 -

GTP], cm >) and one negative occurrence test (for the absence of < [EGFR - act],

cm >).
Let LTLO be the Maude LTL language with propositional part restricted to occur-

rence propositions. Let ψ be an LTLO formula expressed in the PLMaude language and
let s2o(ψ) be the same property expressed in terms of occurrence membership, lifting
s2o(_) homomorphically (on syntax) to LTLO formulas.

Theorem: LTLO. Given an occurrence-based rewrite theory R and initial state s, let π
be a computation of R, s, π′ be the corresponding computation of P(R, s), and π′′ be
the corresponding computation of PS(R, s). Then for any LTLO formula ψ

π |= ψ ⇔ π′ |= s2o(ψ) ⇔ π′′ |= s2o(ψ)

and thus

(R, s) |= ψ ⇔ P(R, s) |= s2o(ψ) ⇔ (PS(R, s), s) |= s2o(ψ)

This is a consequence of the isomorphism of computations and the preservation of
satisfaction of occurrence properties by the occurrence translations.

Note that the LTLO theorem implies that counterexamples are also preserved. This
is important, since queries asking to find a computation having certain properties are
answered by asking a model-checker to find a counterexample to the assertion that no
such computation exists.

5.2 Relevant Subnets for Goals-Avoids Queries

As indicated in § 3, we are especially interested in answering queries of the form “given
initial state I , find a path that satisfies (G,A)” where (G,A) is a basic goals-avoids
property with goals G and avoids A. We interpret this as meaning find a path (that is, a
computation) starting with the initial state I , that reaches a state satisfying goals G, and
such that no state in the path contains any occurrence of A. Without loss, we further
require the path to be minimal, in the sense of not using irrelevant transitions. That is,
if any transition is removed from the set generating the path, the remaining transitions
do not generate a path satisfying the goals. Ideally we would like to focus attention on
the subnet of transitions of a Petri net model that might appear in any minimal path
satisfying that property. We call these the truly relevant transitions. This is of interest
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both to help the biologist focus on a smaller set of transitions and to reduce the search
space to be considered by an analysis tool.

Finding just the truly relevant transitions means finding exactly the minimal paths
satisfying a given property, the problem we are trying to simplify. Thus we will look
for a safe approximation, called the relevant transitions, that is a superset of truly rel-
evant transitions set. Clearly, transitions that mention an occurrence to be avoided can
be eliminated, as can transitions that do not contribute to reaching some goal, or transi-
tions whose pre-set will not be a subset of a reachable state. In the following we define
three transformations that formalize these intuitions. The first transformation removes
transitions that mention an occurrence to be avoided. The second transformation is a
backwards collection of transitions that contribute to reaching a goal, either because
the post-occurrences contain a goal, or recursively contain a pre-occurrence of some
contributing transition. The third transformation is a forward collection of transitions
applicable to reachable states. Then given a Petri net (T , I ), and a goals-avoids prop-
erty (G ,A), T is transformed/reduced to the corresponding set of relevant transitions
relTrans(T , I ,G ,A) by the following process:

A G I
↓ avoids ↓ backwards ↓ forwards

[T ] −→ [T/A] −→ [(T/A)b
G] −→ [((T/A)b

G)f
I ]

elimination collection collection

We will show that any minimal path from initial state I meeting a goals-avoids property
(G ,A) using transitions in T , in fact uses only transitions in relTrans(T , I ,G ,A),
thus it is a safe approximation.

(a) TinyPN (b) Relevant Subnet

Fig. 3. Tiny Petri net (a) and a relevant subnet (b). Dark ovals represent initial state. In (b) the
subnet is colored and the original net context is white.
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Figure 3 show the Petri net tinyPN = (tinyT, tinyI) from Example 5 of §4.3. In the
graphical form we use simple names to label (and refer to) occurrences, leaving the
location part implicit. This will be used to illustrate the concepts and transformations
discussed below.

Definition: Minimal Paths. Let I (initial state), G (goals), A (avoids) be occurrence sets
such that (I ∪G) ∩A = ∅. The set P(T , I ,G ,A) is the set of Petri net computations,
π, that start from the initial state I , and reach a state containing all occurrences in G ,
using transitions in T without ever marking A.

π = O0
τ1−→ . . .

τk−→ Ok ∈ P(T , I ,G ,A) ⇔ O0 = I ∧G ⊆ Ok ∧
∧

0≤i≤k

Oi∩A = ∅

π is minimal if there is no computation π′ in P(T , I ,G ,A) that uses a proper subset
of the transitions used in π, and we let mP(T , I ,G ,A) be the set of computations of
P(T , I ,G ,A) that are minimal.

Example 6: Minimal and non Minimal Paths. In tinyPN (Figure 3) the transitions
T1.1, T1.0 form a path to the goal A0-act, but it is not minimal as T1.1 can be
removed since T1.0 alone is a path.

Lemma: Path Monotonicity. The set of minimal paths monotonically increases with
increasing initial state and decreasing goals and avoids. Specifically, if T ⊆ T ′, I ⊆ I ′,
G ′ ⊆ G , A′ ⊆ A, then

P(T , I ,G ,A) ⊆ P(T ′, I ′,G ′,A′)

and

mP(T , I ,G ,A) ⊆ mP(T ′, I ′,G ′,A′)

Definition: Removing Avoids. Assume given T and A as above. The result of removing
rules that mention an element of A is defined by

T/A = {τ ∈ T (pre(τ) ∪ post(τ)) ∩A = ∅}

Example 7. Removing Avoids. Taking A to be A1*, removing the avoids from the tran-
sitions of tinyPN means removing T1.1 and T2.1, leaving T0, T1.0, T2.0, and T3,
that is

tinyT/A = {T0, T1.0, T2.0, T3}.

Lemma: Removing Avoids is Safe. If π ∈ mP(T , I ,G ,A), then π ∈ mP(T/A, I ,G ,A).
Proof. Since by definition no transition in T − T/A could be used in π.
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Definition: Backward collection. Assume given T , G as above. The backward collec-
tion T b

G of T relative to G is defined by

T b
G =

⋃
j∈Nat

T b
j where

G0 = G Gj+1 = Gj ∪
⋃

τ∈Tb
j

pre(τ)

T b
j = {τ ∈ T out(τ) ∩Gj 6= ∅}

Note that for some n, Gj = Gj+1 for j > n since T is finite and thus only finitely
many increments can be made.

Example 8. Backwards Collection. Backwards collection of tinyT for goal B-act,
tinyTb

B-act, is tinyT minus T3. The can be seen from the following steps in the
collection:

G0 = B-act

tinyTb
0 = {T2.0, T2.1}

G1 = {B-act, B, A0-act, A1-act}

tinyTb
0 = tinyTb

0 ∪ {T0, T1.0, T1.1}

As another example, for goals A0-act and A1-act we have

tinyTb
{A0-act,A1-act} = {T0, T1.0, T1.1}

Lemma: Backward Monotonicity. Backwards collection is monotonic in transitions and
goals. That is, if T ⊆ T ′ and G ⊆ G ′, then T b

G ⊆ (T ′)b
G′ .

The lemma Backwards 1 captures the essence of the reason that a transition that
appears in some minimal path for a set of goals is one produced by backwards collec-
tion.

Lemma: Backwards 1. If O τ1−→ O1
τ2−→ O2 and pre(τ2)∩out(τ1) = ∅ then we can find

O ′
2 such that O τ2−→ O ′

2. Furthermore, for any occurrence set G∗, if out(τ1) ∩G∗ = ∅,
then G∗ ∩O2 ⊆ G∗ ∩O ′

2.
Proof. With the assumptions of the lemma, pre(τ2) ⊆ O , letting O ′

2 = (O− in(τ2))∪
out(τ2) we have, by definition of transition, the desired transition. Also by definition of
transition, O2 = ((O−in(τ1)∪out(τ1))−in(τ2))∪out(τ2). Assuming out(τ1)∩G∗ =
∅ we have G∗ ∩O2 = G∗ ∩ ((O − in(τ1)− in(τ2)) ∪ out(τ2)) ⊆ G∗ ∩O ′

2.
The lemma Backwards 2 identifies conditions under which a sequence of transi-

tions can be restarted at a new state. For backwards collection, the state of interest is
one resulting from deleting an irrelevant transition, such as τ1 in Backwards 1.
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Lemma: Backwards 2. If O ∩ G ⊆ O ′ ∩ G , pre(τ) ⊆ G and O τ−→ O1, then we can
find O ′

1 such that O1 ∩G ⊆ O ′
1 ∩G and O ′ τ−→ O ′

1.
Proof. By the assumptions, pre(τ) ⊆ O ′, so letting O ′

1 = (O ′ − in(τ)) ∪ out(τ)
we have the desired transition. Since O1 = (O − in(τ)) ∪ out(τ), if g ∈ O1 either
g ∈ out(τ) or g ∈ O − in(τ) ⊆ O ′ − in(τ). Thus g ∈ O ′

1.

Theorem: Backward safety. If π ∈ mP(T , I ,G ,A), then π ∈ mP(T b
G , I ,G ,A).

Proof Sketch. Let π = I τ1−→ O1 . . .
τk−→ Ok ∈ mP(T , I ,G ,A). We show that

τj ∈ T b
G for 1 ≤ j ≤ k. Suppose not. Let G∗ be the union of the Gjs in the definition

of T b
G , and let j be the largest number such that τj 6∈ T b

G . Thus out(τj) ∩ G∗ = ∅.
We construct π′ ∈ P(T , I ,G ,A) using fewer transitions, contradicting minimality
of π. If j = k then G ⊆ Ok−1 and π′ is the first k − 1 transitions of π. If j < k
then let O ′

j = Oj−1, and O ′
i+1 = (O ′

i − in(τi+1)) ∪ out(τi+1) for j ≤ i < k. By
maximality of j, τi+1 ∈ T b

G and thus pre(τi+1) ⊆ G∗ for j ≤ i < k. We claim that
Oi+1 ∩ G∗ ⊆ O ′

i+1 ∩ G∗ and O ′
i

τi+1−−−→ O ′
i+1 for j ≤ i < k. For i = j this follows

by backwards lemma 1 and for i > j it follows by backwards lemma 2. Thus taking
π′ = I τ1−→ O1 . . .

τj−1−−−→ O ′
j

τj+1−−−→ . . .
τk−→ O ′

k we are done.

Definition: Forward collection. The forward collection T f
I of T relative to I is defined

by

T f
I =

⋃
j∈Nat

T f
j I f =

⋃
j∈Nat

Ij where

I0 = I Ij+1 =
⋃

τ∈Tf
j

post(τ)

T f
j = {τ ∈ T pre(τ) ⊆ Ij}

Again, we have that for some n, Ij = In for j ≥ n.

Example 9. Forward Collection. Suppose we remove E1 from the inital state, call
this I1, then forward collection of tinyT from I1 omits T1.0, T1.1 and T2.1. Thus
tinyT

f
I1

= {T0, T2.0, T3}.

Lemma: Forward Monotonicity. If T ⊆ T ′ and I ⊆ I ′, then T f
I ⊆ (T ′)f

I ′

Theorem: Forward safety. If π ∈ mP(T , I ,G ,A), then π ∈ mP(T f
I , I ,G ,A).

Proof. This is because for each transition τj+1 in π, using the notation of the definition,
pre(τj+1) ⊆ Ij , and thus τj+1 ∈ T f

j for 0 ≤ j < k.

Definition: Relevant Subnet. The subnet of transitions from T relevant to initial state
I , goals G , and avoids A is defined by

relTrans(T , I ,G ,A) = ((T/A)b
G)f

I .
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Corollary: Relevant Subnet. If π ∈ mP(T , I ,G ,A) is non-empty, then

π ∈ mP(relTrans(T , I ,G ,A), I ,G ,A)

Thus search for such paths can be carried out in the relevant subnet relTrans(T , I ,G ,A).
Note that if G 6⊆ I f then P(T , I ,G ,A) is empty.

Example 10. Relevant subnets. The relevant subnet of tinyPN for goals B-act, avoids
A1-act and initial state I1 = tinyI− E1

relTrans(tinyT, I1, B-act, A1-act) = {T0, T2.0}

is shown in figure 3(b).

6 Summary and Future Work

The main contributions of the paper are: a definition of mappings between rewriting
logic and petri net representations of biological processes (and similar concurrent pro-
cesses) that satisfy certain conditions; proof that these mappings preserve properties of
interest; and definition of a relevant subnet transformation that reduces the number of
transitions that must be considered in search for a path satisfying a goals-avoids prop-
erty.

As context we presented an overview of Pathway Logic illustrated with a model of
Rac1 activation as Maude rules and the representation as a Petri net. We also discuss
the advantages of analyses based on Petri nets.

As models grow in size, we expect to need to explore alternative path finding algo-
rithms. Possibilities include employing more highly tuned model checkers, discovering
new simplification and abstraction transformations, and developing constraint solving
approaches to take advantage of the rapid advances being made in this area. Another
big challenge is refining PLMaude models to incorporate semi-quantitative information
about expression levels and relative preference for competing reactions, and to be able
compute with and visualize the refined models in ways that are meaningful to working
biologists.
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